GOSSIP Detectors:

An option for low-material tracking in e-p/A colliders? Brian A. Cole Columbia University

Shamelessly borrowed from LHeC talk by H. Van der Graaf

GOSSIP

GOSSIP = Gas On Slimmed Silicon Pixel

- Thin (for our purposes) gas detector
- Read out using "silicon pixel detector"
 - \Rightarrow Originally thinned (50 µm) pixel sensor
 - ⇒More recently, just the pixel readout chip itself!

Why Gas+Si?

Advantages of gas sensor

- Less material than Si-based sensors
- Multiple samples per track, with dE/dx
 - ⇒For optimal resolution, want time measurement
- No radiation damage to sensor material
- Relatively insensitive to neutrons, x-rays
- Low capacitance \Rightarrow low noise, low-power pre-amps
- Can be operated over a wide temperature range ⇒ -100 < T < 50 °C</p>

Potential disadvantages

- Position resolution limited by ionization statistics
- Sparking/discharges
- Ageing

GOSSIP: InGrid Technology

So far, most GOSSIP R&D has been based on

Micromegas:

MICROMEsh GASeous detector :

Amplification region : 50-100 micron gap Amplification field >> drift field => efficient collection Gap small => fast signals

Optimally, anode pad size can be = hole pitch

->**VLSI (CMOS) electronics** (Medipix2) 65000 pixels on 2cm²

Integrated Micromegas & CMOS (InGrid)

 Alignment very important when coupling Micromegas to highly segmented detector ⇒InGrid process

InGrid process

- 1) Oxide the Si wafer, insulating SiO_2 layer on top
- 2) Deposition of 0.2 μm of Al for anode, and patterning
- 3) Deposition of 50 μm photoresist and UV exposure
- 4) Deposition and patterning of the grid: 0.8 μ m of pure Al
- 5) Removal of the exposed photoresist
- **RESULT**: a thin mesh (0.8 μ m compared to 3-5 μ m with best standard techniques), sustained at an accurate 50 μ m from the anode.

Gossip using InGrid

Micromegas grid and anode are single unit

Mechanically simple, no complicated alignment

Uses Medipix derived chips

With built-in discharge protection layer

GOSSIP a la Van der Graaf

GOSSIP: Gas On Slimmed SIlicon Pixels

Drift gap determined by trade-off between

– Efficiency, diffusion, drift time

GOSSIP: Some numbers

All from Slides by H. Van der Graaf

- (http://www.nikhef.nl/~d90/gossip/CMOS_Gossip.ppt)
- Required gas gain: ~ 5k
- Input capacitance: < 10 fF (!!)
- In 1 mm or Ar-Iso: diffusion resolution ~ 10 μm
- Pixel sizes (square!): 20-50 µm
- Material
 - 'Slimmed' Si CMOS chip: 20 µm Si
 - Pixel resistive layer
 - Anode pads
 - Grid
 - Grid resistive layer
 - Cathode

- 1 μm SU8 eq.
- 1 μm Al
- 1 μm Al
- 5 µm SU8 eq.
- 1 μm Al

GOSSIP & Related Prototypes

GridPix TPC

- Uses InGrid readout
- 3 cm drift region
- Detected internal conversion (e⁺, e⁻)

Mini high precision GridPix TPC

GOSSIP and Related Prototypes (2)

Fig. 5 A β -track from ⁹⁰Sr, measured with the Gossip prototype. The PSI-46 chip has 52 x 80 pixels of 100 x 150 μ m.

Prototype GOSSIP using CMS PSI-46 chip

Medipix Modifications (post-processing)

From GOSSIP slides by H.Van der Graaf, NIKHEF MediPix modified by MESA+, Univ. of Twente, The

Pixel Pitch: 55 x 55 μ m² Bump Bond pad: 25 μ m octagonal 75 % surface: passivation Si₃N₄ New Pixel Pad: 45 x 45 μ m² Insulating surface was 75 % Reduced to 20 %

Discharge protection

4) Protection Network

 Significant effort has been devoted to attacking the obvious potential problem w/ discharges

InGrid Discharge Studies

From H. Van der Graaf, LHeC Talk, Divonne 2009

... discharges are observed !

For the 1st time: image of discharges are being recorded

Round-shaped pattern of some 100 overflow pixels

Perturbations in the concerned column pixels

- Threshold
- Power

Chip keeps working

No CMOS chip failures after > 1000 discharges

GOSSIP Electronics

 Low capacitance allows for low-noise (75 e RMS), low-power (1 µW/channel !!) electronics
 – News new electronics R&D to utilize

In progress (GOSSOP02)

Why GOSSIP for EIC?

Motivations

- Low material
 - Crucial for suppressing electron bremsstrahlung
 - ⇒And reducing conversions
- Insensitivity to x-rays
- (in gas) dE/dx measurements
 - ⇒Valuable for particle identification
- Radiation insensitive "sensor"
- Can use existing technology/experience with Si detector readout

But, still an R&D project

- Continued work on discharge protection
- Ageing -- needs much more work
- Scaling up to full detector