

Development of a Pixelated Ultra-Light Double-Sided

Ladder for Future Vertex Detectors

Marc Winter

on behalf of the CMOS-ILC team of IPHC/Strasbourg

> more information on IPHC Web site: http://www.iphc.cnrs.fr/-CMOS-ILC-.html

- Major outcome of 11 years of CMOS pixel sensor R&D at IPHC:
 - \triangleright Achieved performances \triangleright Applications under way \triangleright Plans \rightarrow 2012/13
- Perspectives for a future vertex detector adapted to EIC:
 - \triangleright Objectives \triangleright Deliverables \triangleright Context
- Summary

Context of R&D: ILC Vertex Detector

- Sensor requirements defined w.r.t. ILD VTX geometries
 - 2 alternative geometries : *
 - 5 single-sided layers \diamond
 - 3 double-sided layers (mini-vectors)
 - pixel array read-out perpendicular to beam lines ⋇
- **Prominent specifications :**
 - read-out time target values (continuous read-out version) : ⋇
 - SL1/SL2 /SL3 /SL4 /SL5
 - \diamond single-sided : 25 / 50 / 100 / 100 / 100 μs
 - σ_{sp} < 3 μm (partly with binary outputs) \Rightarrow resolution on vertex position \sim O(10) μm
 - ladder material budget in sensitive area ($\lesssim 50 \ \mu m$ thin sensors) : $\overset{\circ}{}_{000}$ single-sided : $< 0.2 \% X_0$ \diamond double-sided : $\sim 0.2 \% X_0$ $P_{diss} \lesssim 0.1-2 \ W/cm^2$ ⋇
 - st P $_{diss}$ \lesssim 0.1–2 W/cm 2

DL2

DL3

DL1

 \diamond double-sided : 25–25 / 100–100 / 100–100 μs

Typical precisions at ILC 0.1 0.01 100 10 Mass [GeV]

Main Features and Advantages of CMOS Sensors

- P-type low-resistivity Si hosting n-type "charge collectors"
 - signal created in epitaxial layer (low doping):
 - ${f Q}$ \sim 80 e-h / μm \mapsto signal \lesssim 1000 e $^-$
 - charge sensing through n-well/p-epi junction
 - excess carriers propagate (thermally) to diode with help of reflection on boundaries with p-well and substrate (high doping)
- Prominent advantages of CMOS sensors:
 - ♦ granularity: pixels of \leq 10×10 μm^2 ⇒ high spatial resolution
 - $\diamond\,$ low mat. budget: sensitive volume \sim 10 15 μm \Rightarrow total thickness \lesssim 50 μm
 - \diamond signal processing μ circuits integrated in the sensors \Rightarrow compacity, high data throughput, flexibility, etc.
 - \diamond other attractive aspects: cost, multi-project run frequency, T_{room} operation, etc.
- ▷ ▷ ▷ Attractive balance between granularity, mat. budget, rad. tolerance, r.o. speed & power dissipation
- Limitations: ⋈ Very thin sensitive volume → impact on signal magnitude (mV !) ⇒ vey low noise FEE
 - ✓ Sensitive volume almost undepleted ⇒ impact on radiation tolerance & speed
 - \Join Commercial fab. \Rightarrow fab. param. (doping profile, etc.) not optimal for charged part. detection
 - ⋈ etc.

Achieved Performances

with Analog Output Sensors

- \sim 30 different prototypes designed at IPHC (some with IRFU/Saclay)
- \sim 100 chips tested on H.E. beams since 2001 at CERN & DESY, mounted on Si-strip or pixel telescope
 - \Rightarrow well established performances (analog output):
 - st Example of well performing technology: AMS 0.35 μm OPTO ightarrow 14 & 20 μm epitaxy thickness
 - * N \sim 10 e⁻ENC \mapsto S/N \gtrsim 20 30 (MPV) at room Temperature

★ Macroscopic sensors : MIMOSA-5 (~ 1.7x1.7 cm²; 1 Mpix); MIMOSA-20 (1x2 cm²; 200 kpix); MIMOSA-17 (0.76x0.76 cm²; 65 kpix); MIMOSA-18 (0.55x0.55 cm²; 256 kpix)

Detection Efficiency & Spatial Resolution

- Detection efficiency:
 - * Ex: MIMOSA-9 data (20, 30 & 40 μm pitch)
 - * $\epsilon_{det} \gtrsim$ 99.5–99.9 % repeatedly observed at room temperature (fake rate $\sim 10^{-5}$)
 - * $T_{oper.} \gtrsim 40 \,^{\circ} C$

- Single point resolution versus pixel pitch:
 - clusters reconstructed with eta-function,
 exploiting charge sharing between pixels (12-bit ADC)
 - $*~\sigma_{f sp}\sim 1~\mu{f m}$ (10 μm pitch) $ightarrow \lesssim 3~\mu{f m}$ (40 μm pitch)
 - st 4-bit ADC simul. $\Rightarrow \sigma_{f sp} \lesssim {f 2} \ \mu{f m}$ (20 μm pitch)
 - * measured binary output resolution (MIMOSA-16, -22): $\sigma_{
 m sp}\gtrsim$ 3.5 & 4.5 μm (18.4 & 25 μm pitch)

- Ionising radiation tolerance (chips irradiated with 10 keV X-Rays) :
 - * Pixels modified against hole accumulations (thick oxide) and leakage current increase (guard ring)
 - * MIMOSA-15 tested with \sim 5 GeV e⁻ at DESY after 10 kGy exposure : Preliminary results
 - T = 20°C, $t_{r,o} \sim 180 \ \mu s$

Conclusion:

• $t_{r.o.} << 1$ ms crucial at T_{room}

Integ. Dose	Noise	S/N (MPV)	Detection Efficiency	
0	9.0 \pm 1.1	27.8 \pm 0.5	100 %	
1 MRad	10.7 \pm 0.9	19.5 \pm 0.2	99.96 \pm 0.04 %	

• Non-ionising radiation tolerance (chips irradiated with O(1 MeV) neutrons):

***** MIMOSA-15 (20 μm pitch) tested on DESY e⁻ beams : Preliminary results

T=-20 $^{\circ}$ C, t $_{r.o.}$ \sim 700 μs	Fluence (10 $^{12}n_{eq}$ /cm 2)	0	0.47	2.1	5.8 (5/2)	5.8 (4/2)
\circ 5.8·10 12 n $_{eq}$ /cm 2 values	S/N (MPV)	$\textbf{27.8}\pm0.5$	$\textbf{21.8}\pm0.5$	$\textbf{14.7}\pm0.3$	8.7 ± 2.	7.5 ± 2.
with standard & soft cuts	Det. Efficiency (%)	100.	$\textbf{99.9}\pm0.1$	$\textbf{99.3}\pm0.2$	77. \pm 2	84. \pm 2.

***** MIMOSA-18 (10 μm pitch) tested at CERN-SPS (120 GeV π^- beam) : Preliminary results

• T = - 20 $^{\circ}$ C, t _{r.o.} \sim 3 ms	Fluence (n $_{eq}$ /cm 2)	0	$6 \cdot 10^{12}$	$1 \cdot 10^{13}$
. 7	Q_{clust} (e ⁻)	1026	680	560
\circ parasitic 1–2 kGy γ gas \Rightarrow N /	S/N (MPV)	$28.5\pm$ 0.2	$20.4\pm$ 0.2	14.7 ± 0.2
onclusion :	Det. Efficiency (%)	$\textbf{99.93} \pm 0.03$	$\textbf{99.85} \pm 0.05$	99.5 ± 0.1

- observed ionising radiation tolerance: O(10 kGy)
- observed non-ionising rad. tol.: > $1 \cdot 10^{13} n_{eq}/cm^2$ ($10 \mu m$ pitch) & $2 \cdot 10^{12} n_{eq}/cm^2$ ($20 \mu m$ pitch)

- Beam telescope of the FP6 project EUDET
 - * 2 arms of 3 planes (plus 1 high resolution plane)
 - * $\sigma_{extrapol.} \lesssim$ 1 μm even with e $^-$ (3 GeV, DESY)
 - * frame read-out frequency $O(10^2)$ Hz
 - * running since '07 CERN-SPS & DESY (numerous users)
 - evolution towards 10⁴ frames/s in 2009, using binary output sensors (see later)

- Several other applications :
 - ★ MIMOSA sensor R&D : Pixel Telescope of Strasbourg (TAPI) →
 - ★ STAR (RHIC) : telescope (3 MIMOSA-14) inside apparatus (2007)
 → background measurement, no pick-up !
 - * CBM (FAIR) : MVD demonstrator (double-sided layers) to be used for high precision tracking in HADES (GSI) \sim 2010
 - * Spin-offs: β -imaging, hybrid photo-detectors, dosimetry, ...

Improving the Read-Out Speed

with Digital Output Sensors

- TC \equiv 1st sensor with integrated zero-suppression
 - ***** MIMOSA-22 (binary outputs) combined with \emptyset (SUZE-01)
 - * Active area: 1152 columns of 576 pixels (21.2 \times 10.6 mm²)
 - st Pitch: 18.4 $\mu m
 ightarrow \sim$ 0.7 million pixels $\Rightarrow \ \sigma_{sp} \gtrsim$ 3.5 μm
 - * $\mathbf{T}_{r.o.} \lesssim \mathbf{110} \ \mu s \mapsto \sim \mathbf{10}^4 \ \mathbf{frames/s}$ $\Rightarrow suited to > \mathbf{10}^6 \ particles/cm^2/s$
 - * Ø in 18 groups of 64 col. allowing \leq 9 "pixel strings" / raw
 - * Sensor full dimensions : \sim 22 x 14 mm 2
 - * Data transmission: 1 output at \geq 160 Mbits/s or 2 outputs at \geq 80 Mbits/s
- Fabricated in 0.35 μm "Opto" technology:
 - * Equips the final version of EUDET Beam Telescope (EU-FP6 project)
 - * Architecture is baseline for STAR, CBM and ILC vertex detectors (+ ALICE upgrade ?)
 - * Sensor still being characterised \Rightarrow test results are **Preliminary**

- 6 sensors used:
 - st some thinned to 120 μm
 - * assembled in telescope configuration
 - for minimum ionising particle
 detection performance evaluation
- CRN-SPS (T4-H6)
 - $*\gtrsim$ 120 GeV π^- beam
 - * 10 days of run in Sept. 2009
 - * 3×10^{6} triggers collected, out of which \sim 80 % events reconstructed

- TC sensors quite extensively characterised by now (quantitative results still preliminary):
 - * TC operating with \gtrsim 99.5 % detection efficiency over the whole sensitive area, with a fake rate \lesssim O(10⁻⁴)
 - st Optimal discri. threshold \sim 5–6 imes Noise value
 - * $\sigma_{sp}^{TC} \lesssim$ 4.5 \pm 0.2 μm (preliminary)
 - \hookrightarrow room for improvement towards $\sigma^{TC}_{sp} \lesssim$ 4 μm

- Conclusion:
 - * TC operationnal for the final EUDET BT \checkmark
 - * TC architecture validated for devt of application specific sensors:
 - STAR-PIXEL, CBM-MVD, ILD-VTX, ... ALICE-ITS ?

- 1st generation sensor for the HFT-PIXEL of STAR (PHASE-1):
 - * full scale extension of MIMOSA-22 (no Ø)
 - * 640x640 pixels (30 μm pitch) \Rightarrow active surface: 19.2 x 19.2 mm²
 - st integration time : 640 μs
 - * designed and fabricated in 2008 \rightarrow currently under production test at LBNL
 - * 3 + 9 ladders to equip with 10 sensors thinned to 50 μm (1/4 of PIXEL)
 - * 1st physics data expected in 2011/12
- Final HFT-PIXEL sensor :
 - * MIMOSA-26 with active area \times 1.8
 - & improved rad. tolerance
 - \hookrightarrow 1088 col. of 10³ pixels (20 x 18.5 mm²)
 - * Pitch : 18.4/20.7 $\mu m \rightarrowtail \sim$ 1 million pixels
 - st Integration time \lesssim 200 μs
 - * Design in 2009/10 \rightarrow fab. Q4 (2010)
 - \rightarrowtail 1st physics data expected in 2013/14

- Move from 0.35 μm to feature size \leq 0.18 μm
 - \Rightarrow improved clock frequency, more metal layers, more compact peripheral circuitry, etc.
- ILD VTX inner layers (t $_{int}$ \sim 25 50 μs) :
 - * double-sided r.o. \Rightarrow twice shorter (= faster) columns
 - st pitch \lesssim 15 μm
 - st binary r.o. \Rightarrow $\sigma_{sp} \lesssim$ 3 μm
- Implement elongated pixels on one side of double-ladder:
 - st pixel pitch of \sim 14imes50–80 μm
 - * reduced nb of pixels per column
 - \Rightarrow shorter read-out (goal: factor 4–6)
 - * depleted epitaxial layer
 - \Rightarrow wider sensing diode spacing (next slide)
 - $\, \hookrightarrow \, \lesssim \,$ 10 μs may be reachable

- Advantages of depleted epitaxial layer:
 - * faster charge collection (< 10 ns) \Rightarrow faster frame read-out frequency possible
 - * shorter minority charge carrier path length \Rightarrow improved tolerance to non-ionising radiation
- Exploration of 0.6 μm techno: \sim 15 μm thick epitaxy ; V_{dd} \leq 5 V ; $ho \sim O(10^3)\Omega \cdot cm$
 - * MIMOSA-25: fabricated in 2008 & tested at CERN-SPS before/after O(1 MeV) neutron irradiation

• Effect of $3 \cdot 10^{13} n_{eq}$ /cm² at room temperature:

($\sigma_{sp}\sim$ 2.5 \pm 0.2 μm)

* SNR(MPV): ~ 60 \searrow ~ 30 \triangleright ϵ_{det} : 99.9...% \searrow 99.5% at T_{room} with 20 μm pitch & 80 μs r.o. time

- $\Rightarrow~$ thin depleted epitaxy approach validated for \gtrsim 10 14 n $_{eq}$ /cm $^2~arprop~$ 0.35 μm version available soon
- Exploration of a new VDSM techno. with depleted substrate : project LePIX (organised by CERN)
 > aim for very short integration time

- Explore newly available 0.35 μm High-Resistivity technology:
 - * resistivities: 400 and 200 $\Omega \cdot cm$
 - st epitaxial thickness: 10, 15, 20 μm
 - * TC/MIMOSA-26 begin refabricated on various substrates
 - * multi-project run in February for STAR:
 - \circ larger pitch \Rightarrow reduced power dissipation and r.o. time
 - \circ reduced steering voltage \Rightarrow reduced power dissipation
 - \circ improved amplification gain \Rightarrow enhanced SNR
 - improved ionising radiation tolerance of in-pixel amplification circuitry
- Explore 0.35 μm techno. extrapolated from the former 0.6 μm techno.
 - st non-uniform resistivity (0.5 to 2 $k\Omega\cdot cm$) and only 3 metal layers
 - * imaging device to be fabricated in Spring 2010
- Explore VDSM techno. with high-resistivity substrate & deep depletion potential (HV)
 - * assess charge coll. properties, radiation tolerance, thinning (& post-processing) possibilities, etc.
 - * envisage using this process for charge sensing in a 3D device (see later)

50 µm sensors

foam

- **PLUME** project
 - Pixelated Ladder using Ultra-light Material Embedding \equiv

Objectives :

- achieve a double-sided ladder prototype
 - for an ILC vertex detector by 2012
- evaluate benefits of 2-sided concept (mini-vectors) : *
 - σ_{sp} , alignment, shallow angle pointing, elongated vs square pixels

Collaboration:

- Bristol DESY Oxford Strasbourg *
- Synergy with Vertex Detector of CBM/FAIR *

Perspective:

- to be studied with infrastructure foreseen in FP-7 project AIDA (proposal in preparation) ⋇
- interest for EIC experiments? ⋇

12 cm

- HP-2 project ▷ WP-26 (ULISI) = SEnsor Row Wrapped In an Extra-Thin Envelope (SERWIETE)
- Objectives :
 - * achieve a sensor assembly mounted on flex and wrapped in polymerised film with \lesssim 0.15 % X $_0$ in total
 - evaluate possibility of mounting supportless ladder on cylindrical surface (serving as mechanical support)
 - * proof of principle expected in 2012

• Working programme:

- * prototype Nr. 1 (2010) made of 1 sensor : MIMOSA-18 (analog output, \lesssim 4 ms)
- st prototype Nr. 2 (2011) made of 3 sensors : TC (digital output, \lesssim 110 μs)

• Context of development:

- * Collaboration with IKF-Frankfurt and GSI/Darmstadt (CBM coll.)
- ***** Synergy with Vertex Detector R&D for CBM, ILC, etc.

Improve capability of displaced vertex reconstruction for charm tagging :

- Foresee a detector made of 3 double layers (barrel & end-cap ?)
 - (and envisage equipping beam pipe ???)

- Ambitionned performances:
 - st thin pixel sensors (50 μm) offering a single point resolution \lesssim 5 μm ?
 - st ladder with complete material budget \lesssim 0.3 % X $_0$
 - * 2 contiguous impacts per particle detected \Rightarrow several benefits for detection performances:
 - \diamond resolution (impact param.) \diamond track rec. \diamond alignment (crucial !) \diamond speed ?

Context : R&D on-going at IPHC-Strasbourg

- Devt of thin, high resolution, CMOS pixel sensors for STAR & CBM (since 2000 & 2003)
 - \Rightarrow design of sensor architecture \sim mature (sensor operational on EUDET/FP-6 telescope)
- Devt of ultra-light ladders for CBM, ILC, etc. (since 2008) \rightarrow WP-26 (HP-2)
 - \Rightarrow several approaches investigated \rightarrowtail prototyping finalised \sim 2012/13
- First data collected with STAR-PIXEL (open charm) in 2012/13
 - \Rightarrow single-sided ladders: $\sigma_{sp} \lesssim$ 5 μm , material budget \sim 0.3–0.4 % X $_0$

- 3D Integration Techno. allow integrating high density signal processing μ circuits inside small pixels by stacking (\sim 10 μ m) thin tiers interconnected at pixel level
- 3DIT are expected to be particularly beneficial for CMOS sensors :
 - * combine different fab. processes \Rightarrow chose best one for each tier/functionnality
 - * alleviate constraints on peripheral circuitry and on transistor type inside pixel, etc.
- Split signal collection and processing functionnalities :

- First chips fabricated in 2009 within 3DIC Consortium (2-Tier 130 nm technology):
 - * 1 chip with sensitive area subdivided in "small" matrices running INDIVIDUALLY in fast rolling shutter mode \Rightarrow few μs r.o. time may be reached (?)
 - * 1 chip aiming to combine 2-Tier read-out chip with sensing chip featuring DEPLETED epitaxial layer

CMOS pixel sensors :

• Ambitionned performances (room T):

 $* \sigma < 5 \ \mu m \checkmark$ * thickness $≤ 50 \ \mu m \checkmark$ * t_{ro} ~ 10-20 μs * 1 MRad & 10¹⁴ n_{eq}/cm² ⇒ on-going R&D on t_{ro} (< 50 µs) & rad. tolerance (> 300 kRad & >> 10¹³ n_{eq}/cm²)

- 3 sensor generations under development:
 - st 2D with undepleted sensitive volume $ightarrow \, {
 m t}_{ro} \sim$ 10-20 μs & 1 MRad (2011/12)
 - * 2D with depleted sensitive volume (elongated pixels) \rightarrow 1 MRad & 10¹⁴ n_{eq}/cm² (2013)
 - st 3D with depleted sensitive volume $ightarrow \, {
 m t}_{ro} \lesssim$ 5 μs (2015)

Ladder developed along 2 parallel approaches:

• Classical : sensors \oplus flex cable \oplus SiC foam \oplus flex cable \oplus sensors

 $\Rightarrow \ \lesssim$ 0.3 % X $_0$ for the whole 2-sided ladder

- Innovating : sensors (35 μm) wrapped in polymerised film (\lesssim 10 μm)
 - $\Rightarrow\ \lesssim$ 0.15 % X_0 for 1 unsupported layer (sensors \oplus flex cable \oplus film)

 \hookrightarrow adaptable to various mechanical supports \mapsto beam pipe ?

- Proposal: investigate possibility of translating ultra-light pixelated ladders developed for CBM
 & ILC to the specifications of an EIC vertex detector, relying on 2 basic components:
 - * thin, depleted, CMOS pixel sensors (baseline 2D, potentially 3D)
 - * ultra-light double-sided ladder complemented with potential pixelated beam pipe
- CMOS pixel sensors developed for EUDET, STAR, CBM, ILC, ALICE (?):
 - * offer necessary single point resolution and material budget for very high precision vertexing
 - * have reached required maturity to be used in large (heavy ion) experiments (e.g. STAR-HFT)
 - \Rightarrow may be relevant for an EIC vertex detector > 2015: barrel & forward (CBM-MVD)
- Ultra-light ladders developed for CBM & ILC:
 - * double-sided ladder with $\leq 0.3 \% X_0$, expected to provide excellent pointing accuracy: impact parameter resolution even at shallow angle, track link with faster detectors, ...
 - * supportless ladder expected to offer \leq 0.15 % X $_0 \rightarrow$ explore possibility to equip beam pipe ?
- Synergetic context to exploit:
 - * CMOS sensor development with Heavy Ion Community
 - * ladder development within HP-2 (Frankfurt, GSI), PLUME collaboration (ILC teams)
 - * perspective: AIDA FP-7 proposal (study of high precision vertex detector alignment issues)