Parallel Bar Crabbing Cavity Option for ELIC

Subashini De Silva Jean Delayen

Center for Accelerator Science Old Dominion University and Thomas Jefferson National Accelerator Facility

Electron-Ion Collider Collaboration Meeting

10 - 12 January, 2010

Outline

- ELIC Crab Cavity Requirements
- Parallel Bar Crab Cavity Structure
- Design Optimization
- Cavity Properties
 - Cavity Geometry
 - Field Orientation
 - Higher Order Modes
- Summary

Electron Ion Collider (ELIC)

Stage		Beam Energy (GeV/c)	Integrated Deflecting Voltage (MV)		
Electron		10	~ 1		
Proton		12	~ 1		
Proto	า	60	10		

Jefferson Lab

Requirements

- Crab cavities are needed to restore head-on collision and avoid luminosity reduction
- ELIC crossing angle ~ 2x20 mrad (6+6 m IR)
- Total deflection required for protons 10 MV
- RF frequency 500 MHz
- Beam aperture diameter 40 mm

Crab Cavity Structures

SLAC 800 MHz Coaxial Cavity

JLab 400 MHz Modified Separator Cavity

Jefferson Lab

SLAC 400 MHz Half Wave Resonator

KEK 508 MHz Elliptical Cavity

- Imparts a transverse momentum to the bunch
- Transverse deflection is due to the Magnetic Field
- Rotate the bunch without deflecting the bunch

Parallel Bar Cavity Concept

- Compact design supports low frequencies
- For deflection and crabbing of particle bunches
- Cavity design Two Fundamental TEM Modes
 - 0 mode :- Accelerating mode
 - $-\pi$ mode :- Deflecting or crabbing mode

Parallel Bar Cavity Concept

E field on mid plane (Along the beam line)

Jefferson Lab

B field on top plane

Deflection is due to the interaction with the Electric Field

Transverse Deflection

Transverse Voltage

$$\vec{V}_T = \int_{-\infty}^{+\infty} \left[\vec{E}_x(z) + \left(\vec{v} \times \vec{B}_y(z) \right) \right] e^{j\frac{\omega z}{c}} dz$$

Transverse Electric Field

$$E_T = \frac{V_T}{\lambda / 2}$$

Transverse Shunt Impedance

 $\frac{R_T}{Q} = \frac{V_T^2}{\omega U}$

Resultant V_T = 0.2998 MV Drop of V_T = 1.55 %

Parallel Bar Cross Sections

Optimizing condition – Obtain a higher deflection with lower surface fields

(d)

(C)

- Increasing effective deflecting length along the beam line increases net transverse deflection seen by the particle
- Racetrack shaped structure (d) has better performance with higher deflection for lower surface fields

Mode Separation by Rounding Edges

Optimization of Bar Width

Optimization of Bar and Cavity Length

- Increase bar and cavity length simultaneously with a constant rounded edge
- Increase in bar length and cavity
 length increases the net deflection
- Optimizes the bar length to $\lambda/2$

Jefferson Lab

410

430

450

Optimized Cavity Geometry and Field Profiles

Surface Fields

Surface E Field

Surface E Field on left bar

Surface E Field on right bar

- Surface fields are localized between the bars
- Cavity size is made more compact by reducing the width

Jefferson Lab

 $\frac{E_P}{E_T} = 2.02$ $\frac{B_P}{E_T} = 6.58 \text{ mT/(MV/m)}$

Surface B Field

Transverse Deflecting Voltage along Beam Line Cross Section

$$\frac{V_T}{V_T(r=0)} = -6.0 \times 10^{-5} \Delta y^2 + 1.0$$

Direction	$\Delta V_{\rm T}/V_{\rm T}$ (At R = 20 mm)		
x	2.29 %		
У	2.24 %		

Cavity Properties

Parameter	Parallel Bar Structure	KEK Cavity *	Unit			
Frequency of π mode	500.31	501.7	MHz			
$\lambda/2$ of π mode	299.8	299.8	mm			
Frequency of 0 mode	524.39	~ 700 MHz	MHz			
Cavity reference length	419.8	299.8	mm			
Cavity width	320.0	866.0	mm			
Cavity height	304.5	483.0	mm			
Bars length	295.0	-	mm			
Bars width	70.0	-	mm			
Aperture diameter	40.0	130.0	mm			
Deflecting voltage (V_T^*)	0.3	0.3	MV			
Peak electric field (E_T^*)	2.02	4.32	MV/m			
Peak magnetic field (B_T^*)	6.58 12.45		mT			
Geometrical factor ($G = QR_S$)	67.11	220	Ω			
$[R/Q]_T$	926.67	46.7	Ω			
$R_T R_S$	6.22×10 ⁴	1.03×10 ⁴	Ω^2			
At $E_T^* = 1 \text{ MV/m}$						

Jefferson Lab

* K. Hosoyama et al, "Crab cavity for KEKB", Proc. of the 7th Workshop on RF Superconductivity, p.547 (1998)

Higher Order Modes

Mode	Frequency (MHz)	Mode of Operation	Field direction on beam axis		[R / Q] _T (Ω)	
			E	В	Direct Integral Method	Using Panofsky Wenzel Theorem
						(r ₀ = 5 mm)
1	500.32	Deflecting	х	У	926.67	928.16
2	524.39	Accelerating	Z		102.81	
3	590.80	Accelerating	Z		54.71	
4	601.29	Deflecting	х	У	2.346	2.35
5	660.46	Deflecting	х	у	230.84	231.06
6	742.10	Accelerating	Z		27.98	
7	828.44	Deflecting	х	У	15.44	15.43
8	924.69	Deflecting	х	У	1.25	1.249
9	948.75	Accelerating	Z		66.53	
10	994.08			z	0.0	
11	1036.12	Deflecting	у	х	15.19	15.17
12	1069.49	Deflecting	у	х	46.78	46.79
13	1076.42			z	0.0	
14	1091.90			z	0.0	
15	1152.82	Deflecting	х	У	10.27	10.25
16	1166.42	Deflecting	У	x	4.59	4.62
17	1166.49	Deflecting	х	У	4.44	4.38
18	1209.64			z	26.32	
19	1219.86	Accelerating	Z		36.29	
20	1280.60			z	0	

Fundamental Mode Separation = 24.1 MHz

Longitudinal Shunt Impedance

Using Panofsky Wenzel Theorem

С

Direct Integral

Jefferson Lab

Transverse Shunt Impedance

Modes of Interest

Crab Cavity for ELIC

- Transverse deflecting voltage (V_T) for a single cell cavity (At $E_T = 1 \text{ MV/m}$) is 0.3 MV
- Achievable transverse deflection per cavity at 500 MHz
 - For a surface electric field of $E_P = 40 \text{ MV/m}, V_T = 5.94 \text{ MV}$
 - For a surface magnetic field of $B_P = 100 \text{ mT}, V_T = 4.56 \text{ MV}$

- Can achieve the required deflecting voltage of 10 MV using 3 cavities (with $B_P = 100 \text{ mT}$)
- Required resultant cavity reference length = 3 x 42 cm = 126 cm
- KEKB Squashed Cell Crab Cavity Operating in TM₁₁₀ Mode
 Crossing angle = 2 x 11 mrad

 V_T =1.4 MV, E_P = 21 MV/m

The design satisfies the current needs of the ELIC crab cavity requirements

Other Parallel Bar Cavity Options

Summary

- Parallel bar crab cavity structure provides the required deflection of 10 MV for protons of 60 GeV with 3 cavities
- Structure is capable of generating higher transverse deflection with very lower surface fields and higher shunt impedance compared to other crabbing structures
- Supports very low frequencies of operation
- Compact design occupies less free space

Future Work

- Further optimization as needed by the ELIC design
- Analysis of Multipacting effects on cavity
- Further study of HOMs and designing of couplers to damp HOMS
- Analysis of Microphonic effects and RF Control

