Parallel Bar Crabbing Cavity Option for ELIC

Subashini De Silva Jean Delayen

Center for Accelerator Science
Old Dominion University
and
Thomas Jefferson National Accelerator Facility

Electron-Ion Collider Collaboration Meeting 10-12 January, 2010

Outline

- ELIC Crab Cavity Requirements
- Parallel Bar Crab Cavity Structure
- Design Optimization
- Cavity Properties
- Cavity Geometry
- Field Orientation
- Higher Order Modes
- Summary

Electron Ion Collider (ELIC)

Stage	Beam Energy (GeV/c)	Integrated Deflecting Voltage (MV)
Electron	10	~ 1
Proton	12	~ 1
Proton	60	10

Requirements

- Crab cavities are needed to restore head-on collision and avoid luminosity reduction
- ELIC crossing angle ~ 2x20 mrad (6+6 m IR)
- Total deflection required for protons - 10 MV
- RF frequency - 500 MHz
- Beam aperture diameter - 40 mm

Crab Cavity Structures

Parallel Bar Cavity Concept

- Compact design supports low frequencies
- For deflection and crabbing of particle bunches
- Cavity design - Two Fundamental TEM Modes
- 0 mode :- Accelerating mode
- π mode :- Deflecting or crabbing mode

Parallel Bar Cavity Concept

E field on mid plane (Along the beam line)

B field on top plane

Deflection is due to the interaction with the Electric Field

Transverse Deflection

- Transverse Voltage

$$
\vec{V}_{T}=\int_{-\infty}^{+\infty}\left[\vec{E}_{x}(z)+\left(\vec{v} \times \vec{B}_{y}(z)\right)\right] e^{j \frac{\partial z}{c}} d z
$$

- Transverse Electric Field

$$
E_{T}=\frac{V_{T}}{\lambda / 2}
$$

- Transverse Shunt Impedance

$$
\frac{R_{T}}{Q}=\frac{V_{T}^{2}}{\omega U}
$$

Transverse E Field (E_{x}) (V/m)

Transverse H Field (H_{Y}) (A/m)

Resultant $\mathrm{V}_{\mathrm{T}}=0.2998 \mathrm{MV}$ Drop of $\mathrm{V}_{\mathrm{T}}=1.55$ \%

Parallel Bar Cross Sections

Optimizing condition - Obtain a higher deflection with lower surface fields

Peak Surface Fields

Design Structure	$\mathbf{E}_{\mathbf{P}} / \mathbf{E}_{\mathbf{T}}{ }^{*}$	$\mathbf{B}_{\mathbf{P}} / \mathbf{E}_{\mathbf{T}}{ }^{*}$ $(\mathbf{m T} / \mathbf{M V} / \mathbf{m})$
(a)	3.30	11.54
(b)	2.80	10.31
(c)	2.61	8.86
(d)	2.31	8.16
At $\mathrm{E}_{\mathrm{T}}{ }^{*}=1 \mathrm{MV} / \mathrm{m}$		

- Increasing effective deflecting length along the beam line increases net transverse deflection seen by the particle
- Racetrack shaped structure (d) has better performance with higher deflection for lower surface fields

Mode Separation by Rounding Edges

Optimization of Bar Width

Bar Width $=10 \mathrm{~mm}$

Bar Width = 50 mm

Bar Width = 100 mm

Jefferson Lab

Optimization of Bar and Cavity Length

- Increase bar and cavity length simultaneously with a constant rounded edge
- Increase in bar length and cavity length increases the net deflection
- Optimizes the bar length to $\lambda / 2$

Optimized Cavity Geometry and Field Profiles

Compact Design Dimensions	Value (mm)
Cavity reference length	419.8
Cavity height	304.5
Cavity width	320.0
Bar width	70.0
Bar length	295.0

9/n
29894 28825 26157 24289 24289
22428 22429
20552 26552
18883
16815 188815 14947

13878 13878 $\begin{array}{r}11219 \\ 9342 \\ \hline\end{array}$ | 7473 |
| :--- |
| 5685 | 3737

1868

UNIVERSITY

Surface Fields

Surface E Field

Surface E Field on left bar

Surface E Field on right bar

- Surface fields are localized between the bars
- Cavity size is made more compact by reducing the width

$$
\begin{aligned}
& \frac{E_{P}}{E_{T}}=2.02 \\
& \frac{B_{P}}{E_{T}}=6.58 \mathrm{mT} /(\mathrm{MV} / \mathrm{m})
\end{aligned}
$$

Surface B Field

Transverse Deflecting Voltage along Beam Line Cross Section

$$
\frac{V_{T}}{V_{T}(r=0)}=6.0 \times 10^{-5} \Delta x^{2}+1.0
$$

$$
\frac{V_{T}}{V_{T}(r=0)}=-6.0 \times 10^{-5} \Delta y^{2}+1.0
$$

Direction	$\Delta \mathrm{V}_{\mathrm{T}} / \mathrm{V}_{\mathrm{T}}$ $(A t \mathrm{R}=20 \mathrm{~mm})$
x	2.29%
y	2.24%

Cavity Properties

Parameter	Parallel Bar Structure	KEK Cavity ${ }^{*}$	Unit
Frequency of π mode	500.31	501.7	MHz
$\lambda / 2$ of π mode	299.8	299.8	mm
Frequency of 0 mode	524.39	$\sim 700 \mathrm{MHz}$	MHz
Cavity reference length	419.8	299.8	mm
Cavity width	320.0	866.0	mm
Cavity height	304.5	483.0	mm
Bars length	295.0	-	mm
Bars width	70.0	-	mm
Aperture diameter	40.0	130.0	mm
Deflecting voltage $\left(V_{T}{ }^{*}\right)$	0.3	0.3	MV
Peak electric field $\left(E_{T}{ }^{*}\right)$	2.02	4.32	MV / m
Peak magnetic field $\left(B_{T}{ }^{*}\right)$	6.58	12.45	mT
Geometrical factor $\left(G=Q R_{S}\right)$	67.11	220	Ω
$[R / Q]_{T}$	926.67	46.7	Ω
$R_{T} R_{S}$	6.22×10^{4}	1.03×10^{4}	Ω^{2}
At $E_{T}{ }^{*}=1$ MV/m			

*K. Hosoyama et al, "Crab cavity for KEKB", Proc. of the 7th Workshop on RF Superconductivity, p. 547 (1998)

Higher Order Modes

Mode	Frequency (MHz)	Mode of Operation	Field direction on beam axis		$[R / Q]_{T}(\Omega)$	
			E	B	Direct Integral Method	Using Panofsky Wenzel Theorem
						($\mathrm{r}_{0}=5 \mathrm{~mm}$)
1	500.32	Deflecting	x	y	926.67	928.16
2	524.39	Accelerating	z		102.81	
3	590.80	Accelerating	z		54.71	
4	601.29	Deflecting	x	y	2.346	2.35
5	660.46	Deflecting	x	y	230.84	231.06
6	742.10	Accelerating	z		27.98	
7	828.44	Deflecting	x	y	15.44	15.43
8	924.69	Deflecting	x	y	1.25	1.249
9	948.75	Accelerating	z		66.53	
10	994.08			z	0.0	
11	1036.12	Deflecting	y	X	15.19	15.17
12	1069.49	Deflecting	y	X	46.78	46.79
13	1076.42			z	0.0	
14	1091.90			z	0.0	
15	1152.82	Deflecting	x	y	10.27	10.25
16	1166.42	Deflecting	y	x	4.59	4.62
17	1166.49	Deflecting	x	y	4.44	4.38
18	1209.64			z	26.32	
19	1219.86	Accelerating	z		36.29	
20	1280.60			z	0	

Fundamental Mode Separation $=24.1 \mathrm{MHz}$

Longitudinal Shunt Impedance

$$
\left[\frac{R}{Q}\right]=\frac{\left|V_{Z}\right|^{2}}{\omega U}=\frac{\left|\int_{-\infty}^{+\infty} \vec{E}_{z}(z) e^{\frac{j \omega z}{c}} d z\right|^{2}}{\omega U}
$$

Direct Integral

$$
\left[\frac{R}{Q}\right]_{T}=\frac{\left|V_{T}\right|^{2}}{\omega U}=\frac{\left|\int_{-\infty}^{+\infty}\left[\vec{E}_{x}(z)+\left(\vec{v} \times \vec{B}_{y}(z)\right)\right] e^{\frac{j \omega z}{c}} d z\right|^{2}}{\omega U}
$$

Using Panofsky Wenzel Theorem

$$
\left[\frac{R}{Q}\right]_{T}=\frac{\left|V_{Z}\left(r=r_{0}\right)\right|^{2}}{\omega U} \frac{1}{\left(k r_{0}\right)^{2}}=\frac{\left|\int_{-\infty}^{+\infty} E_{z}\left(z, r=r_{0}\right) e^{\frac{j \omega z}{c}} d z\right|^{2}}{\left(k r_{0}\right)^{2} \omega U} \quad k=\frac{2 \pi}{\lambda}=\frac{\omega}{c}
$$

Modes of Interest

Frequency $=660.46 \mathrm{MHz}$ Mode of Operation -

B field on mid plane
Deflecting

$$
\left[\frac{R}{Q}\right]_{\mathrm{T}}=230.84
$$

Crab Cavity for ELIC

- Transverse deflecting voltage $\left(\mathrm{V}_{\mathrm{T}}\right)$ for a single cell cavity (At $E_{T}=1 \mathrm{MV} / \mathrm{m}$) is 0.3 MV
- Achievable transverse deflection per cavity at 500 MHz
- For a surface electric field of

$$
E_{P}=40 \mathrm{MV} / \mathrm{m}, \mathrm{~V}_{T}=5.94 \mathrm{MV}
$$

- For a surface magnetic field of

$$
\mathrm{B}_{\mathrm{P}}=100 \mathrm{mT}, \mathrm{~V}_{\mathrm{T}}=4.56 \mathrm{MV}
$$

- Can achieve the required deflecting voltage of 10 MV using $\mathbf{3}$ cavities (with $B_{P}=100 \mathrm{mT}$)
- Required resultant cavity reference length $=3 \times 42 \mathrm{~cm}=126 \mathrm{~cm}$
- KEKB Squashed Cell Crab Cavity Operating in TM $_{110}$ Mode
Crossing angle $=2 \times 11 \mathrm{mrad}$
$\mathrm{V}_{\mathrm{T}}=1.4 \mathrm{MV}, \mathrm{E}_{\mathrm{P}}=21 \mathrm{MV} / \mathrm{m}$

The design satisfies the current needs of the ELIC crab cavity requirements

Other Parallel Bar Cavity Options

Summary

- Parallel bar crab cavity structure provides the required deflection of 10 MV for protons of 60 GeV with 3 cavities
- Structure is capable of generating higher transverse deflection with very lower surface fields and higher shunt impedance compared to other crabbing structures
- Supports very low frequencies of operation
- Compact design occupies less free space

Future Work

- Further optimization as needed by the ELIC design
- Analysis of Multipacting effects on cavity
- Further study of HOMs and designing of couplers to damp HOMS
- Analysis of Microphonic effects and RF Control

