MEIC Collider Ring & IR Optics Chromaticity Correction

Hisham Sayed (Jlab/ODU) Alex Bogacz and Yves Roblin (Jlab) Alexandar Netepenko (FNAL)

> Stony Brook 9 January, 2010

MEIC

> Outline

- MEIC compact lattice with two IP's
- Chromaticity correction scheme
- Beta chromaticity at IP's
- Conclusion

Jefferson Lab

$$\beta_x^* = 25mm$$

 $\beta_y^* = 5mm$

EIC@JLab Parameters

Beam Energy	GeV	12/3	60/5	60/3	250/10
Collision freq.	MHz		499		
Particles/bunch	10 ¹⁰	0.47/2.3	0.74/2.9	1.1/6	1.1 /3.1
Beam current	Α	0.37/2.7	0.59/2.3	0.86/4.8	0.9/2.5
Energy spread	10-4	~ 3	~ 3		
RMS bunch length	mm	50	5	5	5
Horz. emit., norm.	μm	0.18/80	0.56/85	0.8/75	0.7/51
Vert. emit. Norm.	μm	0.18/80	0.11/17	0.8/75	0.03/2
Horizontal β*	mm	25	25	25	125
Vertical β*	mm	5	5		
Vert. b-b tuneshift/IP		.015/.013	0.01/0.03	.015/.08	0.01/0.1
Laslett tune shift	p-beam	0.1	0.1	0.054	0.1
Peak Lumi/IP, 10 ³⁴	cm ⁻² s ⁻¹	0.59	1.9	4.0	11

Low energy

Medium energy

High energy

Jefferson Lab

Figure-8 Electron Ring – Optics

Collider Ring – Tune Diagram

Two Ring 'tunes' are being studied:

Working point above the integer: $Q_x=32.096$ $Q_y=29.113$ Working point a la KEKB:

Q_x=32.506 Q_y=29.531

Figure-8 Collider Ring – Arc Optics

36 FODO cells, total arc length: 180 m phase adv./cell ($\Delta \phi_{x,y}$ = 120⁰)

- No dispersion suppression at the end of the arc Uncompensated dispersion leakage into the straights (by design) to facilitate chromaticity compensation with sextupoles in the straights
- Dispersion pattern not favorable for chromaticity compensation with sextupoles: small disp. and betas, large phase advance driven by mitigation of synchrotron radiation effects on emittance

Jefferson Lab

Dipoles Lb=150 cm B=**11.6** kG.

Quadrupoles Lq=50 cm G= ±**4.5** kG/cm

Interaction Region Optics

vertical focusing first

* Fartoukh, LHC-rep 308

Jefferson Lab

Straight – Chromaticity Compensation

Uncompensated dispersion pattern coming out of the Arc

Montague Chromatic function

Conclusions

- MEIC figure-8 compact lattice .
- Dispersive straights for chromaticity correction.
- · Beta chromaticity correction for the two IP's
- Ring Tune chromaticity correction
- More to be done (tune chromaticity correction in second straight, 2nd order chromaticity correction, dynamic aperture studies)
- Acknowledgement & special thanks to

Hutton, Derbenev, all CASA members

 $\zeta_x^{after} \& \zeta_v^{after} < 100$