re Virtual Exclusive Processes with Charm* Deep 0.85 Ex Simonetta Liuti U sity of Virginia Collaborations Meeting Stony Brook January 12-14, 2010 C *In collaboration with: Leonard Gamberg, Gary Goldstein Graduate Students: Osvaldo Gonzalez Hernandez, Tracy McAskill

<u>Outline</u>

- Motivations
- Deeply Virtual π^{o} and η Production
 - ⇒ A unique access to chiral odd GPDs
 (S. Ahmad, G. Goldstein, S.L., PRD79, 2008)
- Deeply Virtual Charmed Mesons Production
 - ⇒ A unique access to intrinsic charm content of nucleons
- Physically Motivated Parametrizations
- Conclusions/Outlook

Motivations

The next decade ...

• LHC results from multi-TeV CM energy collisions will open new horizons but many "candidate theories" will provide similar signatures of a departure from SM predictions...

 ${\scriptstyle \bullet}$ Precision measurements require QCD input \rightarrow <u>Dual role</u>

Factorization scale $\sigma(P_1, P_2) = \sum_{i,j} \int dx_1 dx_2 f_i(x_1, \mu_F) f_j(x_2, \mu_F) \hat{\sigma}(x_1, x_2, \alpha_S(\mu_R), \mu_F)$ Hard process x-section Parton distributions Measured x-section

• QCD: A background for "beyond the SM discovery"

• Most important point for EIC

...Our understanding of the structure of hadrons is

disconcertingly incomplete

⇒ Rich dynamics of hadrons can only be accessed and tested at the desired accuracy level in lepton DTS

• Our contribution to EIC physics (S.L. with G. Goldstein and L. Gamberg)

Study heavy quark components \rightarrow <u>charm</u>, through <u>hard exclusive processe</u>

Why charm?

LHC processes are sensitive to charm content of the proton: \Rightarrow Higgs production: SM Higgs, charged Higgs, $c\overline{s} \rightarrow H^+$ \Rightarrow Precision physics (CKM matrix elements, V_{tb}.): single top production Impact of new CTEQ6.5(M,S,C) PDFs $\sigma_{tot} (c + \bar{s} \rightarrow H^+)$ 2.25 Tevatron 2 Intrinsic σ/σ(CTEQ6.5M) Charm 1.75 S4 S2 S0 S3 Strangeness 1.5 Series 1.25 C.P.Yuan and collaborators LHC 0.75 1.3 100 150 200 250 300 Intrinsic H⁺ Mass [GeV] Charm S4 S2 S0 1.2 Strangeness Series 1.1 0.9 0.8 0.7200 400 600 800 1000 H⁺ Mass [GeV]

CTEQ 6.6

IMPLICATIONS OF CTEQ GLOBAL ANALYSIS FOR ...

PHYSICAL REVIEW D 78, 013004 (

TABLE V. Relative differences $\Delta_{GM} \equiv \sigma_{6.1}/\sigma_{6.6} - 1$ between CTEQ 6.1 and CTEQ 6.6 cross sections for Higgs boson produ at the LHC listed at the beginning of Sec. IV, compared to the PDF uncertainties Δ_{PDF} in these processes. The Ah^{\pm} cross section combined production of positively and negatively charged Higgs bosons, with m_h being the mass of the *CP*-odd boson ($m_h =$ and $m_{h^{\pm}}$ given by $m_{h^{\pm}}^2 = m_A^2 + M_W^2$.

m_h (GeV)	$\Delta_{\rm GM}(\%) \Delta_{\rm PDF}(\%)$												
	V	BF	Z	⁰ h	Α	h^{\pm}	88	$\rightarrow h$	$c\bar{b}$	$\rightarrow h^+$	$c\bar{s} \rightarrow c\bar{s}$	h^+	$c\bar{s} + c\bar{b} \rightarrow$
100	-3.8	3.1	-3.2	2.7	-3.2	4.3	0.6	4.4	1.5	5.9	-18	10	-8.4
200	-1.8	2.8	-1.6	2.8	-1.9	4.3	1.7	3.2	2.1	4.7	-16	8	-6.6
300	-1.6	2.8	-0.6	3	-0.4	5.3	2.3	2.7	1.9	4.3	-14	7	-6.2
400	-0.1	3.3	0	3.4	0.7	6.6	2.8	3.8	2	4.8	-13	6.3	-5.6
500	0.2	2.8	0.4	3.7	1.1	7.6	3.3	3.9	2.3	6.1	-12	6.3	-5
600	-0.7	3.5	0.7	4.1	1.6	9.2	3.8	5.0	2.8	8	-11	6.8	-4.2
700	0.2	3.0	0.9	4.4	2.1	11	4.3	6.3	3.4	10	-9.9	7.7	-3.4
800	2.3	3.5	1	4.8	2.8	13	4.9	7.8	4.1	12	-8.7	9	-2.4

Why charm?

<u>Outstanding question in QCD:</u> is there a "non-perturbative/intrinsic char component"?

Data are at very low x where they canno discriminate whether IC is there

Why Exclusive Processes?

 η_c , D°, and \overline{D}° exclusive production is governed by <u>chiral-odd</u> soft matrix elements (\Rightarrow Generalized Parton Distributions, GPDs) which <u>cannot</u> <u>evolve from gluons!</u>

 η_c , D°, and \overline{D} ° used as triggers of "intrinsic charm content"!

Windows into Heavy Flavor Production at the EIC Inclusive

IC content of proton can be large (up to 3 times earlier estimates) but PDF analyses are inconclusive (J.Pumplin, PRD75, 2007)

Intrinsic Charm (IC) Hadronic Processes "Light Cone" based Processes \overline{c} U С U $ar{D}^{o}$ d U Λ_c $p \rightarrow \overline{D}^{o} \Lambda_{c}$ $|p\rangle \rightarrow |uudc\overline{c}\rangle$

Brodsky, Gunion, Hoyer, R.Vogt, ...

Meson Cloud: Thomas, Melnichouk ...

 \overline{C}

Intrinsic Charm can be "partially" detected by looking at asymmetries in Inclusive Heavy Quark Jets Production Ananikian and Ivanov, NPB (2008)

$$A_{2\varphi}(\rho, x, Q^2) = 2\langle \cos 2\varphi \rangle(\rho, x, Q^2) = \frac{d^3 \sigma_{lN}(\varphi = 0) + d^3 \sigma_{lN}(\varphi = \pi) - 2d^3 \sigma_{lN}(\varphi = \pi/2)}{d^3 \sigma_{lN}(\varphi = 0) + d^3 \sigma_{lN}(\varphi = \pi) + 2d^3 \sigma_{lN}(\varphi = \pi/2)}$$

$$- \qquad \qquad A_{IC}^{LO} = 0$$

Intrinsic Charm can be singled out more clearly in asymmetries fi Exclusive Heavy Quark Meson Production!

$$\begin{array}{l} \gamma^{\star} \mathbf{p} \rightarrow \bar{\mathbf{D}}^{\circ} \ \Lambda_{c}^{+} \Longrightarrow 2\mathbf{H}_{u} - \mathbf{H}_{d} + \mathbf{H}_{c} \\ \gamma^{\star} \mathbf{p} \rightarrow \bar{\mathbf{D}}^{\circ} \ \Sigma_{c}^{+} \Longrightarrow \mathbf{H}_{d} - \mathbf{H}_{c} \\ \gamma^{\star} \mathbf{n} \rightarrow \bar{\mathbf{D}}^{\circ} \ \Sigma_{c}^{\circ} \Longrightarrow \mathbf{H}_{u} - \mathbf{H}_{c} \end{array}$$

SU(4) relations allow one to extract H_c

 $p \rightarrow \bar{c}cuud \rightarrow (\bar{c} c) uud = p$

"golden plated signal"

 $\eta_c\text{=}c\bar{c} \rightarrow J^{\text{PC}}\text{=}0^{\text{-+}}$

Pseudoscalar Mesons Electroproduction and Chiral Odd GP (S. Ahmad, G. Goldstein and S.L., PRD (2008))

Unpolarized Cross Section

t-channel J^{PC} quantum numbers for deeply virtual exclusive proces

Duality Picture

t-channel J^{PC} quantum numbers for deeply virtual exclusive proces

 $\Rightarrow \pi^{o_{,}} \eta_{c}$ electroproduction always occurs with C=-1 !

Chiral Even Sect

J^{PC} quantum numbers & GPDs $N\overline{N}$: spin S = 0, J = L, P = (-1)^{L+1}, C = (-1)^{L+S} I^{PC} : $L = 0 \implies 0^{-+}$ $L = 1 \implies 1^{+1}$ $L = 2 \Rightarrow 2^{-+} \dots L^{(-1)^{L+1}}$ spin S = 1, J^{PC} : L = 0 \Rightarrow 1⁻⁻ $L = 1 \Rightarrow 0^{++}, 1^{++}, 2^{++}$ $L = 2 \Rightarrow 1^{-1}, 2^{-1}, 3^{-1}, \dots, (L-1, L, L+1)^{(-1)^{L+1}}$ These must match the q+anti-q states' quantum numbers (quarkonium states). q+anti-q \leftrightarrow N+antiN although the S_z totals need not match for $\theta_t \neq 0$. For z-axis quantization. $\langle \lambda \lambda' | \rightarrow S_{z'} = \lambda - \lambda'$ for \vec{z}' along \vec{k} similarly for $|\Lambda \Lambda' \rangle$ forward limit $f_1(x) + g_1(x) \sim |\Lambda = + \rightarrow \lambda = +|^2 \sim \langle + +|T| + + \rangle$ linear combinations $f_1(x) - g_1(x) \sim |\Lambda = + \rightarrow \lambda = -|^2 \sim \langle - -|T| + + \rangle$ for S_Z=0, S=0 or 1

5 G. Goldstein, INT Workshop, 200

 $\begin{array}{c} \text{distribution} & J^{PC} \\ \\ H^q(x,\xi,t) - H^q(-x,\xi,t) & 0^{++}, 2^{++}, \ldots \\ E^q(x,\xi,t) - E^q(-x,\xi,t) & 0^{++}, 2^{++}, \ldots \\ \tilde{H}^q(x,\xi,t) + \tilde{H}^q(-x,\xi,t) & 1^{++}, 3^{++}, \ldots \\ \tilde{E}^q(x,\xi,t) + \tilde{E}^q(-x,\xi,t) & 0^{-+}, 1^{++}, 2^{-+}, 3^{++}, \ldots \\ H^q(x,\xi,t) + H^q(-x,\xi,t) & 1^{--}, 3^{--}, \ldots \\ H^q(x,\xi,t) + E^q(-x,\xi,t) & 1^{--}, 3^{--}, \ldots \\ \tilde{H}^q(x,\xi,t) - \tilde{H}^q(-x,\xi,t) & 2^{--}, 4^{--}, \ldots \\ \tilde{E}^q(x,\xi,t) - \tilde{E}^q(-x,\xi,t) & 1^{+-}, 2^{--}, 3^{+-}, 4^{--}, \ldots \end{array}$

Chiral Even Sector: M. Diehl and D. Ivanov (2008)

Only combination good for π° production

$$\langle N(p')\Lambda' | J_A^{\nu} | N(p)\Lambda \rangle = \overline{U}^{(\Lambda')}(p') \left[\underbrace{g_A(t)}_{A} \gamma^{\nu} \gamma^5 + \underbrace{g_P(t)}_{m_{\mu}} \Delta^{\nu} \gamma^5 \right] U^{(\Lambda)}(p)$$

$$g_P(t) = \frac{2m_\mu M}{m_\pi^2 - t} g_A(0)$$

 $g_P(t)$ = pseudoscalar form factor \rightarrow dominated by pion pole

1) For π° production the pion pole contribution is absent! 2) The non-pole contribution is very small! π°,η_{c} electroproduction happens mostly in the chiral-odd sector

 \Rightarrow it is governed by chiral-odd GPDs

⇒issue overlooked in most recent literature on the subject

Since <u>chiral-odd</u> GPDs <u>cannot evolve from gluons</u> we have proven that η_c , D°, and D° uniquely single out the "intrinsic charm content"!

Chiral Odd Sect

Transversity

- $l \pm \frac{1}{2}$ _{Transversity} = { $l + \frac{1}{2} > \pm(i) | -\frac{1}{2} >$ }_{helicity}/ $\sqrt{2}$ for spin 1/2, etc.
- for p -> 0 this corresponds to spin quantized along normal to scattering plane y-axis
- consider IN, ± ½)_T → Iq, ± ½)_T

to GPD J^{PC}

$$f_1(x) = H(x,0,0) \sim \left(\left\langle + + |T| + + \right\rangle + \left\langle - - |T| + + \right\rangle \right)$$

$$g_1(x) = \tilde{H}(x,0,0) \sim \left(\left\langle + + |T| + + \right\rangle - \left\langle - - |T| + + \right\rangle \right)$$

$$h_1(x) = H_T(x,0,0) \sim \left\langle - + |T| - + \right\rangle$$

One more input into J^{PC} assignments for all GPDs

C - parity involves symmetry under $q \leftrightarrow \overline{q} \& N \leftrightarrow \overline{N}$ Crossing operation exchanges $x \leftrightarrow -x$

G. Goldstein, INT Workshop, 200

8

6 "f" helicity amps

$$\begin{aligned} \frac{d\sigma_T}{dt} &= \mathcal{N} \left(\mid f_{1,+;0,+} \mid^2 + \mid f_{1,+;0,-} \mid^2 + \mid f_{1,-;0,+} \mid^2 + \mid f_{1,-;0,-} \mid^2 \right) \\ &= \mathcal{N} \left(\mid f_1 \mid^2 + \mid f_2 \mid^2 + \mid f_3 \mid^2 + \mid f_4 \mid^2 \right) \\ \frac{d\sigma_L}{dt} &= \mathcal{N} \left(\mid f_{0,+;0,+} \mid^2 + \mid f_{0,+;0,-} \mid^2 \right) \\ &= \mathcal{N} \left(\mid f_5 \mid^2 + \mid f_6 \mid^2 \right), \end{aligned}$$

Helicity Amplitudes from correlator contracted with $i\sigma^{+i}$

$$\begin{split} \int dk^{-} d^{2}\mathbf{k} \ \mathrm{Tr} \left[\mathrm{i}\sigma^{+\mathrm{i}} \Phi \right]_{\mathrm{XP}^{+} = \mathrm{k}^{+}} \\ &= \frac{1}{2P^{+}} \overline{U}(P', S') \left[\underline{H_{T}^{q}} \, \mathrm{i}\sigma^{+\,i} + \ \underline{\widetilde{H}_{T}^{q}} \ \frac{P + \Delta^{i} - \Delta^{+} P^{i}}{M^{2}} + \underline{E_{T}^{q}} \ \frac{\gamma^{+} \Delta^{i} - \Delta^{+} \gamma^{i}}{2M} \\ &+ \underline{\widetilde{E}_{T}^{q}} \ \frac{\gamma^{+} P^{i} - P^{+} \gamma^{i}}{M} \right] \ U(P, S) \end{split}$$

Using LC spinors formalism (Diehl) one obtains

$$\begin{split} A_{+-,++} &= -\frac{\sqrt{t_0 - t}}{2M} \left[\frac{\widetilde{H}_T + \frac{1 + \xi}{2} E_T - \frac{1 + \xi}{2} \widetilde{E}_T}{2} \right] \\ A_{++,--} &= \sqrt{1 - \xi^2} \left[\frac{H_T + \frac{t_0 - t}{4M^2} \widetilde{H}_T - \frac{\xi^2}{1 - \xi^2} E_T + \frac{\xi}{1 - \xi^2} \widetilde{E}_T}{1 - \xi^2} \right] \\ A_{+-,-+} &= -\sqrt{1 - \xi^2} \frac{t_0 - t}{4M^2} \widetilde{H}_T \\ A_{++,+-} &= \frac{\sqrt{t_0 - t}}{2M} \left[\frac{\widetilde{H}_T + \frac{1 - \xi}{2} E_T + \frac{1 - \xi}{2} \widetilde{E}_T}{2} \right], \end{split}$$

Rewrite helicity amps. expressions using new GFFs

$$f_{1} = f_{4} = \frac{g_{2}}{C_{q}}F_{V}(Q^{2})\frac{\sqrt{t_{0}-t}}{2M}\left[\widetilde{\mathcal{H}}_{T} + \frac{1-\xi}{2}\mathcal{E}_{T} + \frac{1-\xi}{2}\widetilde{\mathcal{E}}_{T}\right]$$

$$f_{2} = \frac{g_{2}}{C_{q}}\left[F_{V}(Q^{2}) + F_{A}(Q^{2})\right]\sqrt{1-\xi^{2}}\left[\mathcal{H}_{T} + \frac{t_{0}-t}{4M^{2}}\widetilde{\mathcal{H}}_{T} - \frac{\xi^{2}}{1-\xi^{2}}\mathcal{E}_{T} + \frac{\xi}{1-\xi^{2}}\widetilde{\mathcal{E}}_{T}\right]$$

$$f_{3} \neq \frac{g_{2}}{C_{q}}\left[F_{V}(Q^{2}) - F_{A}(Q^{2})\right]\sqrt{1-\xi^{2}}\frac{t_{0}-t}{4M^{2}}\widetilde{\mathcal{H}}_{T}$$

$$f_{5} = \frac{g_{5}}{C_{q}}F_{A}(Q^{2})\sqrt{1-\xi^{2}}\left[\mathcal{H}_{T} + \frac{t_{0}-t}{4M^{2}}\widetilde{\mathcal{H}}_{T} - \frac{\xi^{2}}{1-\xi^{2}}\mathcal{E}_{T} + \frac{\xi}{1-\xi^{2}}\widetilde{\mathcal{E}}_{T}\right],$$
elementary subprocess
$$GFFs$$

Q² dependent pion vertex

Q² dependence(G. Goldstein and S.L., to be publi

Standard approach (Goloskokov and Kroll, 2009)

 $\gamma_{\mu}\gamma_{5} \Rightarrow$ leading twist contribution within OPE, leads to suppression of transverse vs. longitudinal terms $\gamma_{5} \Rightarrow$ twist-3 contribution is possible

However...

```
\Rightarrow suppression is not seen in experiments
```

Need to devise method to go beyond the collinear OPE: consider a mechanism that takes into account the breaking of rotational symmetry by the scattering plane in helicity flip processes (transverse d.o.f.)

We proposed a possible model

Distinction between ω,ρ (vector) and b_1,h_1 (axial-vector)exchar

$$J^{PC}=1^{--}$$
 +ransition from $\omega, \rho(S=1 L=0)$ to $\pi^{o}(S=0 L=0)$

$$J^{PC}=1^{+-}$$
 \longrightarrow transition from b_1, h_1 (S=0 L=1) to π° (S=0 L=0)

"Vector" exchanges no change in OAM

"Axial-vector" exchanges change 1 unit of OAM!

$$\begin{split} F_{\gamma^*V\pi^o} &= \int dx_1 dy_1 \int d^2 \mathbf{b} \psi_V(y_1, b) \mathcal{C} K_o(\sqrt{x_1(1 - x_1)Q^2}b) \psi_{\pi^o}(x_1, b) exp(-S) \\ F_{\gamma^*A\pi^o} &= \int dx_1 dy_1 \int d^2 \mathbf{b} \psi_A^{(1)}(y_1, b) \mathcal{C} K_o(\sqrt{x_1(1 - x_1)Q^2}b) \psi_{\pi^o}(x_1, b) exp(-S) \end{split}$$

Because of OAM axial vector transition involves Bessel J_1

$$\psi^{(1)}_A(y_1,b) = \int d^2k_T J_1(y_1b)\psi(y_1,k_T),$$

This yields configurations of larger "radius" in b space (suppressed with G

What goes into a theoretically motivated parametrization...?

The name of the game: Devise a form combining essential dynamical elements with a flexible model that allows for a fully quantitative analysis constrained by the data

+ Q² Evolution

Vertex Structures

Vertex function Φ

$$\phi(k^2,\boldsymbol{\lambda}) = rac{k^2-m^2}{|k^2-\boldsymbol{\lambda}^2|^2}.$$

O. Gonzalez Hernandez, S

Fixed diquark mass formulation

$$G_{M_X}^{\Lambda^2}(X,\zeta,t) = \int d^2 \mathbf{k}_\perp \frac{\phi(k^2,\Lambda^2)}{k^2 - m^2} \frac{\phi(k'^2,\Lambda^2)}{k'^2 - m^2} \mathcal{N}_{\mathcal{H}(\mathcal{E},\tilde{\mathcal{H}},\tilde{\mathcal{E}})} \quad \zeta \ge X$$

$$k^{2} = (XP^{+}) \left[\frac{M^{2}}{P^{+}} - \frac{M_{X}^{2} + \mathbf{k}_{\perp}^{2}}{(1 - X)P^{+}} \right] - \mathbf{k}_{\perp}^{2}$$
$$k^{\prime 2} = (XP^{+}) \left[\frac{M^{2} + \Delta_{\perp}^{2}}{P^{+}} - \frac{M_{X}^{2} + \mathbf{k}_{\perp}^{2}}{(1 - X)P^{+}} \right] - (\mathbf{k}_{\perp} + \Delta_{\perp})^{2}$$

ERBL region

$$G_{M_X}^{\Lambda^2}(X,\zeta,t) = \int d^2 \mathbf{k}_\perp \frac{\phi(P_X^2,\Lambda^2)}{P_X^2 - M_X^2} \frac{\phi(k'^2,\Lambda^2)}{k'^2 - m^2} \mathcal{N}_{\mathcal{H}(\mathcal{E},\tilde{\mathcal{H}},\tilde{\mathcal{E}})} \quad \zeta < X.$$

Reggeized diquark mass formulation

$$\begin{split} G_{M_X}^{\Lambda^2}(X,\zeta,t) &= \int d^2 \mathbf{k}_\perp \int dM_X^2 \,\rho(M_X^2) \, \frac{\phi(k^2,\Lambda^2)}{k^2 - M_X^2} \frac{\phi(k'^2,\Lambda^2)}{k'^2 - m^2} \mathcal{N}_{\mathcal{H}(\mathcal{E},\tilde{\mathcal{H}},\tilde{\mathcal{E}})} \quad \zeta \geq X \\ G_{M_X}^{\Lambda^2}(X,\zeta,t) &= \int d^2 \mathbf{k}_\perp \int dM_X^2 \,\rho(M_X^2) \, \frac{\phi(P_X^2,\Lambda^2)}{P_X^2 - M_X^2} \frac{\phi(k'^2,\Lambda^2)}{k'^2 - m^2} \mathcal{N}_{\mathcal{H}(\mathcal{E},\tilde{\mathcal{H}},\tilde{\mathcal{E}})} \quad \zeta < X. \end{split}$$

 $\texttt{DIS} \rightarrow \texttt{Brodsky}, \texttt{Close}, \texttt{Gunion}$

Fitting Procedure

- - ✓ <u>3 parameters</u> per quark flavor (M_X^q , Λ_q , α_q) + initial Q_o^2

 \sim 2 parameters per juark flavor (β , p)

$$\begin{split} R_{1(2)}^{I} &= X^{-\underline{\alpha}^{I}} \underline{=} \beta_{1(2)}^{I} (1-X)^{\underline{p_{1(2)}^{I}} t} & \text{Regge} \\ G_{M_{X}}^{\lambda}(X,t) &= \mathcal{N} \frac{X}{1-X} \int d^{2}\mathbf{k}_{\perp} \frac{\phi(k^{2},\lambda)}{D(X,\mathbf{k}_{\perp})} \frac{\phi(k'^{2},\lambda)}{D(X,\mathbf{k}_{\perp}+(1-X)\mathbf{\Delta}_{\perp})} & \text{Quark-Diqual} \end{split}$$

- ✓ Fit at ζ≠0, t≠0 ⇒ DVCS, DVMP,... data (convolutions of GPDs with Wilson coefficient functions) + lattice results (Mellin Moments of GPDs)
- Note! This is a multivariable analysis => see e.g. Moutarde, Kumericki and D. Mueller, Guidal and Moutarde

ζ=0,t=0

Parton Distribution Functions

Nucleon Form Factors

$$\int_{0}^{1} dX H^{q}(X,t) = F_{1}^{q}(t)$$
$$\int_{0}^{1} dX E^{q}(X,t) = F_{2}^{q}(t),$$

Data Set	$\chi^2/N_{\rm data}$ Set 1	$\chi^2/N_{\rm data}$ Set 2	Data P
G_{E_p}	1.049	0.963	33
G_{M_p}	1.194	1.220	75
G_{E_p}/G_{M_p}	0.689	0.569	20
G_{E_n}	0.808	1.059	25
G_{M_n}	2.068	1.286	24
TOTAL	1.174	1.085	177

S. Ahmad, H. Honkanen, S. L., S.K. Taneja, PRD75:094003,2007

Parameters from PDFs

Flavor	M_X (GeV)	$\lambda ~({\rm GeV})$	α
u	0.4972	0.9728	1.2261
d	0.7918	0.9214	1.0433

Parameters from FFs

Flavor	$\beta_1 \; (\text{GeV}^{-2})$	$\beta_2 \; (\text{GeV}^{-2})$	p_1	p_2
u	1.9263 ± 0.0439	3.0792 ± 0.1318	0.720 ± 0.028	0.528 ± 0.0
d	1.5707 ± 0.0368	1.4316 ± 0.0440	0.720 ± 0.028	0.528 ± 0.0

New Developments

✓We repeated the calculation with improved lattice resul (Haegler et al., PRD 2007, arXiv:0705:4295)

Results are comparable (up to n=2) to "phenomenological" extrapolation

✓We are investigating the impact of different chiral extrapolat methods: <u>"direct" extrapolation applicable up to n=2 only</u>

$$A_{20}^{u-d}(t,m_{\pi}) = A_{20}^{0,u-d} \left(f_A^{u-d}(m_{\pi}) + \frac{g_A^2}{192\pi^2 f_{\pi}^2} h_A(t,m_{\pi}) \right) + \tilde{A}_{20}^{0,u-d} j_A^{u-d}(m_{\pi}) + A_{20}^{m_{\pi},u-d} m_{\pi}^2 + A_{20}^{t,u-d} t \,,$$

M. Dorati, T. Gail and T. Hemmert (NPA 798, 2008)

(Also using P. Wang, A. Thomas et al.)

New Results are more precise and compatible with other chiral extrapolat

New Analysis

Extend analysis to Strange and Charm Content of nucleon² Bali, S.Collins, Schäfer, hep-lat,0911.2704

Results

BSA data are predicted at this stage

 Observable given by Interference Term between DVCS (a) and BH(b):

$$d\sigma^{\rightarrow} - d\sigma^{\leftarrow} \propto \sin\phi \left[F_1(\Delta^2)\mathcal{H} + \frac{x}{2-x}(F_1 + F_2)\tilde{\mathcal{H}} + \frac{\Delta^2}{M^2}F_2(\Delta^2)\mathcal{E} \right]$$
$$\mathcal{H} = \sum_q e_q^2(H(\xi,\xi,\Delta^2) - H(-\xi,\xi,\Delta^2))$$

Hall B (one binning, 11 more)

 σ_{LT}

A_{UL} (HallB data)

Conclusions and Outlook

- EIC with an extended kinematical coverage (low to "larger" x_{Bj}) and wide Q² range will provide invaluable information on both pdfs (needed for LHC ...!!), and basic hadronic properties: nature of charm content, quark and gluons spin, transversity...
- Through deeply virtual exclusive charmed mesons production we suggested a unique way of singling out the Intrinsic Charm (IC) content of the nucleon:
 - Transversity sensitive observables are key: they cannot evolve from gluons
 - Asymmetries for Pseudoscalar Charmed mesons production will establish a lower limit on the size of IC component