Diffractive Vector Meson Production: Dipole Model vs. pQCD

Michael Savastio (Stony Brook) January 2010

Motivation

- ${\mbox{\circ}}$ The exclusive vector meson diffractive cross-section is proportional to $g^2(x,Q^2)$ and
- Channel for observing gluon saturation effects

Several successful descriptions (for HERA data):

- Color Dipole Models
- pQCD
- Vector Meson Dominance (not discussed here)
- What VM parameters are important and how do we measure them at eRHIC?
- What needs to be done differently for e+A?

Dipole Model & KWM

Based on:

Exclusive diffractive processes at HERA within the dipole picture, H. Kowalski, L. Motyka, G. Watt, PhysRev D74, 074016, arXiv:hep-ph/0606272v2

Dipole model:

- 1. γ^* fluctuates into qq pair
- 2. qq scatters elastically on p(A)
- 3. qq pair recombines into γ^{\star}
- 4. γ^* decays into VM

Cross-section for production of final state VM:

$$\frac{\mathrm{d}\sigma_{T,L}^{\gamma^* p \to E_p}}{\mathrm{d}t} = \frac{1}{16\pi} \left| \int \mathrm{d}^2 r \int_0^1 \frac{\mathrm{d}z}{4\pi} \int \mathrm{d}^2 b \left(\Psi_E^* \Psi \right)_{T,L} \mathrm{e}^{-\mathrm{i}[b-(1-z)r] \cdot \Delta} \left(\frac{\mathrm{d}\sigma_{q\bar{q}}}{\mathrm{d}^2 b} \right)^2 \right|^2$$

$$Amplitude$$

$$Amplitude$$

$$Dipole Cross-Section$$

$$Cross-Section$$

Dipole Cross-Section: b-Sat Model

$$\frac{d\sigma_{q\bar{q}}}{d^2b} = 2\left(1 - e^{-\frac{\pi^2}{2N_c}r^2\alpha_s(\mu^2)xg(x,\mu^2)T(b)}\right)$$

scale μ^2 is related to the dipole size r by $\mu^2 = 4/r^2 + \mu_0^2$

The initial gluon density at the scale μ_0^2 is taken in the form

$$xg(x,\mu_0^2) = A_g x^{-\lambda_g} (1-x)^{5.6}$$

Gluon density for VM production is evaluated at scale:

$$x = x_B (1 + M_V^2 / Q^2)$$

Proton shape: <u>Gaussian</u> or step function, here only former is used: $T_G(b) = \frac{1}{2\pi B_G} e^{-\frac{b^2}{2B_G}} \quad B_G = 4 \text{ GeV}^{-2} \text{ from fits to HERA data}$

Dipole Cross-Section: b-Sat Model

Overlap Function

$$\begin{split} (\Psi_V^*\Psi)_T &= \hat{e}_f e \frac{N_c}{\pi z(1-z)} \left\{ m_f^2 K_0(\epsilon r) \phi_T(r,z) - \left[z^2 + (1-z)^2 \right] \epsilon K_1(\epsilon r) \partial_r \phi_T(r,z) \right\}, \\ (\Psi_V^*\Psi)_L &= \hat{e}_f e \frac{N_c}{\pi} Q Z(1-z) K_0(\epsilon r) \left[M_V \phi_L(r,z) + \delta \frac{m_f^2 - \nabla_r^2}{M_V z(1-z)} \phi_L(r,z) \right] \\ \text{where:} \\ \hat{e}_f &= 2/3, \ 1/3, \ \text{or} \ 1/\sqrt{2}, \ \text{for} \ J/\psi, \ \phi, \ \text{or} \ \rho \ \text{mesons} \quad \nabla_r^2 = (1/r) \partial_r + \partial_r^2 \\ e &= \sqrt{4\pi \alpha_{em}} \\ \epsilon^2 &= z(1-z) Q^2 + m_f^2 \end{split}$$

z = fraction of photon's light cone momentum carried by quark

r = dipole size

 m_f = quark mass

 M_V = vector meson mass

 N_c = 3 colors

*K*_{0,1}: Bessel functions

 $\delta = 0$ or 1 (model/author dependent - here always 1)

 $\phi_{T,L}(r,z) = VM$ wave function $\phi_T(r,z) = N_T [z(1-z)]^2 \exp(-r^2/2R_T^2),$ $\phi_L(r,z) = N_L z(1-z) \exp(-r^2/2R_L^2).$

Overlap Function

Suppression of the Dipole XSection

 J/ψ

Suppression of the Dipole XSection

Putting it Together

$$\frac{d\sigma_{T,L}^{\gamma^*p \to pV}}{dt} = \frac{1}{16\pi} \left| \int dr (2\pi r) \int_0^1 \frac{dz}{4\pi} \int db (2\pi b) (\Psi_V^*\Psi)_{T,L} J_0(b\Delta) J_0([1-z]r\Delta) \left| \frac{d\sigma_{q\bar{q}}}{d^2\vec{b}} \right|^2$$

After angular integrations

Putting it Together

[7] Kowalski, Motyka, Watt, hep-ph/0606272

e+p: J/ψ production, b-Sat model

Diffractive VM in pQCD

[1] S. Brodsky et al., Phys.Rev.D50:3134,1994, e-Print: hep-ph/9402283
[2] L. Frankfurt et al., Phys. Rev. D 54, 3194 - 3215 (1996) (corrects above)

$$\frac{d\sigma_L^{\gamma^*N \to VN}}{dt} \bigg|_{t=0} = \frac{12\pi^3 \Gamma_V m_V \eta_V^2 T(Q^2)}{\alpha_{em} N_c^2} \cdot \frac{\alpha_s^2(Q) |[1 + i\frac{\pi}{2}\frac{d}{d\ln x}] x G(x, Q^2)|^2}{Q^6}$$

 $T(Q^2)$: Introduced in [2].

 $T(Q^2)$: Accounts for "preasymptotic" effects

Formula (w/o T) is only valid when transverse momenta in $q \Box q$ dipole (Fermi-motion) are neglected, i.e., at sufficiently large Q². Otherwise corrections are needed.

Comparison with Dipole Model

e+A

Based on

KT: Henri Kowalski , Derek Teaney, PRD68:114005, hep-ph/0304189 KLV: H. Kowalski, T. Lappi, R. Venugopalan, PRL100:022303, arXiv:0705.3047 [hep-ph]

$$\frac{d\sigma_{dip}^{A}}{d^{2}b} = 2\left[1 - e^{-r^{2}F(x,r^{2})\sum_{i=1}^{A}T_{p}(b-b_{i})}\right] \text{ for } \mathbf{e}+\mathbf{A}$$

$$F(x, r^{2}) = \frac{\pi^{2}}{2N_{c}} \alpha_{s}(\mu^{2}) x g(x, \mu^{2})$$

The average differential dipole cross-section can be approximated by:

$$\left\langle \frac{d\sigma_{dip}^{A}}{d^{2}b} \right\rangle \approx 2 \left[1 - \left(1 - \frac{T_{A}(b)}{2} \sigma_{dip}^{p} \right)^{A} \right]$$
where
$$\sigma_{dip}^{p} = \int d^{2}b \, \frac{d\sigma_{dip}^{p}}{d^{2}b}$$
which can be calculated from the b-Sat in e+p

e+A: J/ψ production, b-Sat model

 $\langle \frac{d\sigma_{dip}^A}{d^2b_\perp} \rangle \approx 2 \left[1 - \left(1 - \frac{T_A(b_\perp)}{2} \sigma_{dip}^p \right)^A \right]$

Suppression of the Dipole XSection

e+A: J/ψ production, b-Sat model

Conclusions/Questions

- Dipole model and pQCD look consistent except at very low $\,Q^2{\rm as}$ claimed by the authors
- ho, ϕ May be better for measuring saturation effects as J/ψ wavefunction suppresses the saturation part of the dipole xsection
- e+A: saturation part of dipole cross-section extends to larger r
- $t\,$ Dependence challenging to measure in e+A, limiting observable parameters
- Can the effects of saturation be effectively measured using diffractive VM production at eRHIC?
- What are the difficulties of obtaining the dipole amplitude from production? ho, ϕ

Extra Slides

$\frac{d\sigma_L^{\gamma^*N\to VN}}{dt}\bigg|_{t=0} = \frac{12\pi^3\Gamma_V m_V \eta_V^2 T(Q^2)}{\alpha_{em}N_c^2} \cdot \frac{\alpha_s^2(Q)|[1+i\frac{\pi}{2}\frac{d}{d\ln x}]xG(x,Q^2)|^2}{Q^6}$

 η_{v} : effective inverse momentum of the vector meson distribution amplitude that controls the *leading twist* contribution to the lepto-production amplitude.

$$\eta_V \equiv \frac{1}{2} \frac{\int dz d^2 k_T [z(1-z)]^{-1} \Phi_V(z,k_T)}{\int dz d^2 k_T \Phi_V(z,k_T)}$$

 $\Phi_{\vee}(z)$: wave function of longitudinal polarized vector meson *Roughly*: Describes the distribution amplitudes of the longitudinal momentum fraction z of the quark in the meson. Light mesons (ρ , ϕ): $\Phi_{\vee}(z) \sim 6 z(1-z)$ Heavy mesons (J/ψ , Υ): $\Phi_{\vee}(z) \sim \delta(z-1/2)$ (non-rel. picture)

Typical values used: $\eta_{\rho} \approx 2-5$ $\eta_{J/\psi} \approx 2$ (model dep.)

Theory (V): Understanding the formula

Theory (VIII): transversely polarized case

[3] L. Frankfurt et al., Phys.Rev.D57:512,1998, hep-ph/9702216

$$\frac{d\sigma^{\gamma^*N \to VN}}{dt} \bigg|_{t=0} = \frac{12\pi^3 \Gamma_V m_V^3}{\alpha_{em}} \cdot \frac{\alpha_s^2(Q) |[1 + i\frac{\pi}{2}\frac{d}{d\ln x}] x G(x, Q^2)|^2}{(Q^2 + 4m^2)^4} \cdot \left(1 + \epsilon \frac{Q^2}{m_V^2}\right) \mathcal{C}(Q^2)$$

where

$$\mathcal{C}(Q^2) = \left(\frac{\eta_V}{3}\right)^2 \left(\frac{Q^2 + 4m^2}{Q^2 + 4m_{run}^2}\right)^4 T(Q^2) \frac{R(Q^2) + \epsilon(Q^2/m_V^2)}{1 + \epsilon(Q^2/m_V^2)}$$

 ϵ =0 purely transverse polarized (real photons Q² = 0) ϵ =1 equal mix

Experimental Side (I)

[4] ZEUS, Eur.Phys.J.C6:603,1999, hep-ex/9808020
[5] ZEUS, Nucl.Phys.B695:3,2004, hep-ex/0404008
[6] H1 Eur.Phys.J.C13:371,2000, hep-ex/9902019

Experiments measure ep (eA) cross-section not virtual photoproduction cross-sections

Recall: $Q^2 = sxy$

Experimental Side (II)

$$\frac{d^2 \sigma^{ep}}{dy dQ^2} = \Gamma_T(y, Q^2) (\sigma_T^{\gamma * p} + \epsilon \sigma_L^{\gamma * p})$$

ε is the ratio of long. and transv. virtual photon flux

$$\epsilon = \frac{2(1-y)}{1+(1-y)^2}$$

typically 0.8 - 1

and the transverse photon flux is:

$$\Gamma_T = \frac{\alpha_{em}}{2\pi} \frac{1 + (1 - y)^2}{yQ^2}$$

together:

$$\frac{d^2 \sigma^{ep}}{dy dQ^2} = \frac{\alpha_{em}}{\pi Q^2 y} [(1 - y + \frac{y^2}{2})\sigma_T^{\gamma * p} + (1 - y)\sigma_L^{\gamma * p}]$$

Experimental Side (III)

The virtual photon cross-section

$$\sigma^{\gamma^* p} \equiv \sigma_T^{\gamma^* p} + \epsilon \sigma_L^{\gamma^* p}$$

can be used to evaluate the total exclusive cross-section

$$\sigma_{tot}^{\gamma^* p} \equiv \sigma_T^{\gamma^* p} + \sigma_L^{\gamma^* p}$$

through:

$$\sigma_{tot}^{\gamma^* p} = \frac{1+R}{1+\epsilon R} \sigma^{\gamma^* p}$$

where

$$R = \frac{\sigma_L^{\gamma^* p}}{\sigma_T^{\gamma^* p}}$$

Experimental Side (IV)

In our case:

$$\sigma^{\gamma^* p \to p J/\psi} \equiv \sigma_T^{\gamma^* p} + \epsilon \sigma_L^{\gamma^* p}$$

can be used to obtain:

$$\sigma_{tot}^{\gamma^* p \to pJ/\psi} \equiv \sigma_T^{\gamma^* p \to pJ/\psi} + \sigma_L^{\gamma^* p \to pJ/\psi}$$
$$= \frac{1+R}{1+\epsilon R} \sigma^{\gamma^* p \to pJ/\psi}$$

Experimental Side (V)

- Model predictions: e.g. $R = 0.5 \cdot (Q^2/M_{J/\psi})$
- Helicity structure of VM production can be used to get R

Experimental Side (VI)

Much bigger (and more uncertain) for ρ

Comparing Theory with Experiment

In order to compare results with calculations and thus relate measured value with $G(x,Q^2)$ we need:

$$\left. \frac{d\sigma_L^{\gamma^* p}}{d|t|} \right|_{t=0} = \frac{R}{1+R} \cdot \frac{b}{1-e^{-b|t|_{max}}} \cdot \sigma_{tot}^{\gamma^* p}$$

$$\frac{d\sigma}{d|t|} \underset{\propto}{\overset{\text{since}}{\propto} e^{-b|t|}}$$

In e+A at eRHIC we are not going to measure any *t*-dependence So what is b? What is t_{max}? Guess t_{max} will be related to the point where incoherent sets in? We can get an estimate from e+p - is that good enough?

More on b

J/ ψ : no significant Q dependence $b = 4.5 \pm 0.2 \text{ GeV}^{-2}$

ρ: carful about what is said here:

while for the J/ $\psi\,$ photo and electroproduction give the same b this is not true for the $\rho\,$

At times authors are not careful in their statements

Even more on b for the p

diffractive component with proton dissociation and the non-resonant two-pion background. The elastic component is fitted with a free slope parameter b, whereas the contribution of diffractive ρ events with proton dissociation, which amounts to $11 \pm 5\%$ of the elastic signal, has a fixed slope parameter $b_{pd} = 2.5 \pm 1.0 \text{ GeV}^{-2}$ (see section 3.2.2).¹¹ The non-resonant background,

Mail from Markus Diehl (translated)

- As an upshot I should say right away that in my opinion the exclusive channels (vector mesons or DVCS)
- are NOT usable to determine the conventional gluon density g(x). In the factorization approach one always have the Gluon-GPD. Only at normal gluon densities and in a rough approximation (leading log x) they become equivalent.
- Beyond that there is no model independent connection between GPD(x,xi,t=0) and PDF(x).
- The Durham group (Martin Ryskin Teubner) has promoted that over the years but had to retract some of their statements recently after critique by Dieter Mueller and myself.
- From excl. J/psi production one can hopefully learn a lot about the gluon GPD, or, if saturation effects become important, about the dipole cross-sections. (The tdependence of the Gluon-GPD is for example best determined by the J/psi data since theory works better than for the rho. To promote these channels as "golden channel" for determening the normal gluon density is misleading.
- Q: Why is J/psi not suitable to measure saturation?
- A: the reason for this is not the J/psi but more precise the wave function of a heavy quark in the photon:
- there distances r >> 1/m are exponentially suppressed(*). One is dominated by smal³³

Mail from Raju

- I don't understand Markus' critique as stated if it is based on the overlap of wavefunctions. The overlap K_0 is first of all only for longitudinal polarization-for K_1 even smaller dipole
- sizes are enhanced. (This is even more true for F_2 by the way.) But the enhancement of small dipole sizes by kinematics is what we want (K_1 is good!) because then if there is a large cross-section
- for small dipoles, we know it is saturation not confinement. Perhaps Markus' point is the opposite-which would then make sense-namely, K_0 is too sensitive to LARGE transverse sizes, so if we
- see a large effect, it could instead be due to confinement not saturation. But the easy way to resolve the two would be the x dependence of the result. One would predict a very different x dependence from the

other.

Dipole Model (I)

[7] Kowalski, Motyka, Watt, hep-ph/0606272

$$\frac{d\sigma_{T,L}^{\gamma^*p \to pV}}{dt} = \frac{1}{16\pi} \left| \int dr (2\pi r) \int_0^1 \frac{dz}{4\pi} \int db (2\pi b) (\Psi_V^*\Psi)_{T,L} J_0(b\Delta) J_0([1-z]r\Delta) \left| \frac{d\sigma_{q\bar{q}}}{d^2\vec{b}} \right|^2$$

after angular integrations

Overlaps between photon and VM wave fct.:

$$\begin{aligned} (\Psi_V^*\Psi)_T &= \hat{e}_f e \, \frac{N_c}{\pi z (1-z)} \, \left\{ m_f^2 K_0(\epsilon r) \phi_T(r,z) - \left[z^2 + (1-z)^2 \right] \epsilon K_1(\epsilon r) \partial_r \phi_T(r,z) \right\}, \\ (\Psi_V^*\Psi)_L &= \hat{e}_f e \, \frac{N_c}{\pi} \, 2Q z (1-z) \, K_0(\epsilon r) \, \left[M_V \phi_L(r,z) + \delta \, \frac{m_f^2 - \nabla_r^2}{M_V z (1-z)} \phi_L(r,z) \right] \end{aligned}$$

$$egin{aligned} \phi_T(r,z) &= N_T[z(1-z)]^2 \exp(-r^2/2R_T^2), \ \phi_L(r,z) &= N_L z(1-z) \exp(-r^2/2R_L^2). \end{aligned}$$

Dipole Model (II)

What is what:

- r: dipole radius
- z: fraction of photon's light-cone momentum carried by quark
- b: impact parameter
- Δ : transverse momentum lost by outgoing proton
- J₀: mod. Bessel 1st kind
- K₀: mod. Bessel 2nd kind
- N_c = 3

$$\epsilon^2 \equiv z(1-z)Q^2 + m_f^2$$

 $4\pi\alpha_{\rm em}$

 $\hat{e}_f = 2/3, 1/3, \text{ or } 1/\sqrt{2}, \text{ for } J/\psi, \phi, \text{ or } \rho$

Dipole Model (III)

N_T, N_L, R_T, and R_L: parameters of Gaus-LC VM wave fct.

Meson	$M_V/{ m GeV}$	f_V	$m_f/{ m GeV}$	N_T	$R_T^2/{ m GeV^{-2}}$	N_L	$R_L^2/{ m GeV^{-2}}$
J/ψ	3.097	0.274	1.4	1.23	6.5	0.83	3.0
ϕ	1.019	0.076	0.14	4.75	16.0	1.41	9.7
ρ	0.776	0.156	0.14	4.47	21.9	1.79	10.4

or of "boosted Gaussian"

Meson	$M_V/{ m GeV}$	f_V	$m_f/{ m GeV}$	\mathcal{N}_T	\mathcal{N}_L	$\mathcal{R}^2/\mathrm{GeV}^{-2}$	$f_{V,T}$
J/ψ	3.097	0.274	1.4	0.578	0.575	2.3	0.307
ϕ	1.019	0.076	0.14	0.919	0.825	11.2	0.075
ρ	0.776	0.156	0.14	0.911	0.853	12.9	0.182

Dipole Model (III)

Dipole cross-section (Glauber-Mueller)

$$\frac{d\sigma_{q\bar{q}}}{d^2\vec{b}} = 2\left[1 - \exp\left(-\frac{\pi^2}{2N_c}r^2\alpha_S(\mu^2)xg(x,\mu^2)T(b)\right)\right]$$

For simplicity (flat gluon distribution):

$$T(b) = \frac{1}{\pi b_S^2} \Theta \left(b_S - b \right),$$