Photons @ RHIC: Results from STAR

Marcia Maria de Moura for the STAR Collaboration

STAR Experiment At RHIC

RHIC & AGS Annual Users Meeting – BNL – Upton,NY - May 31, 2005

Introduction

Photons in A+A collisions

Mainly, from π^0 , η decays

Important probe in many aspects

In STAR, allow better statistics to higher p_T than charged pions

Direct photons

Main advantage – large mean free path in the created matter

Produced in all stages of the collision

thermal photons – access to temperature (initial, hadronization)

High p_T photons to investigate hadron supression in A+A collisions

Direct γ production $q + \overline{q} \rightarrow g + \gamma$ $q + g \rightarrow q + \gamma$ *Bremsstrahlung*

Extraction of direct photon production is harder due to large hadronic decay background $\rightarrow \pi^{0}(\eta)$ measurements very important

Inclusive γ and π^0 from the STAR TPC

Measurement obtained from γ conversion in TPC

Material used as γ converter: Beampipe SVT SSD Inner field cage TPC gas

> Efficiency $\gamma \sim 2\%$ $\pi^{0} \sim 0.04\%$

RHIC & AGS Annual Users Meeting – BNL – Upton,NY - May 31, 2005

γ reconstruction

 e^+ and e^- are selected through dE/dx

loose cuts are applied

low $p_{\rm T}$ accepted only if they do not come from collision vertex

For the pairs, it is required a small opening angle and conversion vertex different from collision vertex

Trajectory of reconstructed γ points back to collision vertex

RHIC & AGS Annual Users Meeting – BNL – Upton,NY - May 31, 2005

Au+Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV - γ spectra

γ and π⁰ – Au+Au at 130 GeV
J. Adams *et al.*, Phys. Rev. C 70 (2004) 044902

Error bars: statistical only Systematic uncertainty: 20% Combinatorial background has been subtracted

Other contributions, such as Λ decays, were verified to be negligible

Centrality dependence Curves are power law fits

Au+Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV - π^0 spectrum

Each point is the gaussian fit of the 2γ invariant mass distribution for a given $p_{\rm T}$

- ~10 MeV width, depending on $p_{\rm T}$
- Systematic uncertainty of 30%

Comparison of π^0 to π^+ and π^- from STAR TPC dE/dx and TOFr shows good agreement.

Correlation of large $E_{\rm T}$ photons with charged particles

Jet studies allow further investigation of parton energy loss mechanism

2 particle correlations

probe of intra-jet (same side) and back-to-back jet (away side)

Previous studies

charged particle correlations for $p_T < 6 \text{ GeV}/c$ This Analysis

 γ (mostly from π^{0}) – h[±] correlations

Extends correlation energy range, due to EMC measurement of photons-

incoming partons

RHIC & AGS Annual Users Meeting – BNL – Upton,NY - May 31, 2005

d+Au collisions at $\sqrt{s_{NN}}$ =200 GeV

Data set

3.9 M High Tower triggered events

EMC patch - 4 x 4 towers

High tower trigger - tower in a patch with the highest energy above

Selections and Cuts

Highest tower energy selected

Isolation cut

No track pointing in a 3 x 3 tower patch around main tower

Associated track – basic selection criterium used in many STAR analysis

RHIC & AGS Annual Users Meeting – BNL – Upton,NY - May 31, 2005

d+Au correlations

RHIC & AGS Annual Users Meeting – BNL – Upton,NY - May 31, 2005

Jet properties $- \langle j_T \rangle$ and $\sqrt{\langle k_T \rangle}$

 j_T - transverse momentum component of jet from jet axis k_{T} - transverse momentum component of initial parton

Correlation (Gaussian) widths $\sigma_N \rightarrow$ near side $\sigma_{F} \rightarrow$ far side

$$E_T \to E_{trig},$$
$$p_{\pi} \to p_{\pi}^{associated}$$

 $\left| \sqrt{k_T^2} \right|$

 p_T

 $\langle z \rangle \rightarrow$ fragmentation function of trigger photon (0.6~0.8)

 $|E_T\rangle \sqrt{\sigma_F^2 + \sigma_N^2}$

$$\sigma_{N}^{2} \approx \frac{\langle E_{T}^{2} \rangle + \langle p_{T}^{2} \rangle}{2 \langle E_{T}^{2} \rangle \langle p_{T}^{2} \rangle} \langle j_{T}^{2} \rangle$$

 $\left| j_{\scriptscriptstyle T}^2
ight
angle$

RHIC & AGS Annual Users Meeting – BNL – Upton,NY - May 31, 2005

Centrality dependence of σ_{N} and σ_{F}

Preliminary

No strong centrality dependence of either near and far side widths within errors

RHIC & AGS Annual Users Meeting – BNL – Upton,NY - May 31, 2005

$< j_T >$ and $\sqrt{< k_T^{rms} >}$ dependences

RHIC & AGS Annual Users Meeting – BNL – Upton,NY - May 31, 2005

First Results from Photon Multiplicity Detector

Two planes CPV+Pre-shower Gas (Ar+CO₂) detector of 82944 hexagonal cells Detector area: 4.2 m² Distance from vertex: 5.4 m -3.8 < η < -2.3 and full azimuthal coverage

The CPV plane was not in present analysis

Photon Multiplicity Distribution

RHIC & AGS Annual Users Meeting – BNL – Upton,NY - May 31, 2005

Limiting Fragmentation trend

Energy dependence

Centrality dependence

Limiting Fragmentation Scenario for π and γ

 π production follows the LF scenario

Photon production is scaled down by about 7% to reflect the contribution from π^0

nucl-ex/0502008 - Submited to PRL

RHIC & AGS Annual Users Meeting – BNL – Upton,NY - May 31, 2005

Direct Photon measurements for p+p and d+Au

EMC measurements Tower + SMD + pre-shower p+p and d+Au, towards Au+Au Direct photon spectra Subtraction of background and contamination from inclusive spectra π^{0} , η photon decays other neutral contribution (n,K⁰) Contamination from charged hadrons Acceptance/Efficiency corrections

Direct Photon Analysis Status

- Systematic studies of BEMC/BSMD Shower properties studies on BSMD
 - Cluster size, energy Development of cluster algorhytm
- Acceptance/efficiency

d+Au π^0 embedded data

RHIC & AGS Annual Users Meeting – BNL – Upton,NY - May 31, 2005

Marcia Maria de Moura

EMC module Tower $(\Delta\eta, \Delta\phi) = (0.05, 0.05)$ $\delta E/E \sim 16\%/\sqrt{E}(\text{GeV})$ BMSD $(\Delta\eta, \Delta\phi) \text{ strip} = (0.007, 0.007)$ $\sigma_{\eta} = 2.4 \text{ mm} + 5.6 \text{ mm}/\sqrt{E}(\text{GeV})$ $\sigma_{\phi} = 3.2 \text{ mm} + 5.8 \text{ mm}/\sqrt{E}(\text{GeV})$

π^0 spectrum for d+Au collisions

Reasonable agreement with pQCD calculations within errors

RHIC & AGS Annual Users Meeting – BNL – Upton,NY - May 31, 2005

More to come...

Photon HBT (Jack Sandweiss talk)

Analysis of q_{invariant} photon pairs distribution HBT peak produced by direct photons Investigation of spatial and temporal dimensions of QGP phase

γ-charged correlations in Au+Au

Potencial observation of away-side correlation from direct photons due to hadron (π°) suppression

Investigation of parton energy loss

Back up slides

Near and Far side widths

Decrease with increasing $E_{\rm trig}$

Decrease with increasing $p_{T}^{associated}$

RHIC & AGS Annual Users Meeting – BNL – Upton,NY - May 31, 2005