

The RHIC Photon Feast BBQ

Justin Frantz SUNY Stony Brook RHIC/AGS Users Meeting Photon Workshop June 21, 2005

A Succesful BBQ Starts With Flavors and Ingredients...

- Properly Aged: Theoretical techniques well established and have perhaps reached a milestone of maturity ?
- Healthy: A lot of activity by many different groups, theoretical community actively pursuing many new avenues (e.g. HBT)
- Organically Grown: Some tuning on SPS data possible
- Fresh: Medium Induced γ sources generating fresh excitement

Ingredients: Hard Scattering Rates

- Perturbative QCD NLO predictions solid for years (*Phox*)
- At RHIC high $p_T \pi^0$ and γ works well...
- However predicted rates still have scale, FF (π⁰) uncertainties unconstrained by the data
- Quantitative ~50%? getting larger as we go down
- NNLL/O gluon resummation not quite yet (see hep-ph/0504115), but maybe not too important @ RHIC

Ingredients: Thermal Rates

- QGP: perturbative Thermal QCD •
 - Hard Thermal Loop (HTL) calculations "complete"? Resummation of all order loops with LPM performed by A.M.Y. Reliable fit in "the large E/T range" (Aurenche hep-ph/0410282) "Full result to LO in α_{s} ".
 - Factor of 2 enhancement to previous
 - What systematic should we assign? 50%?

rate has been used as an educated guess. Moreover, one has to keep in mind that these rates have been derived under the unrealistic assumption of $g \ll 1$, which renders their applicability even more dubious. Since non-perturbative methods such as lattice QCD do not allow the calculation of T. Peitzmann, M.H. Thoma / Physics Reports 364 (2002) 175-246

- Hadron Gas (HHG): pQuantum Hadro-Dynamics
 - Also mature calculations
 - However, including process X? ($^{\pi^{\pm}\rho \rightarrow \pi^{\pm}\gamma}$ via $a_1 \rightarrow \pi\gamma$ etc...)
 - New processes usually can potentially change rates by factor of ~2 but often tulffitioEutentoPbeciess.^{Us}stable²⁰⁰⁵/- 50-100%

The New Ingredient: Jet-Medium Induced Photons

- Specific p_T region ~3-7 GeV, just where the hard rates become truly hard
- Assumes QG degrees of freedom, equilibrium, different dependence than thermal rates
- Two possible components: multiple scattering, Bremmstrahlung
- Non-zero flow pattern!

Spices, Marinates, Prepwork

- Putting it all together! Rates folded against:
- Realistic Phase Space Distributions and Evolutions

 Initial State or other state points
- Hydrodynamics, uRQMD, Parton Cascade Models
- Mixed phase, pre-equilibrium effects:
- Hydro-based "Complete" Evolution Models:
 - Renk, et.al. fireball: flow / HHG important _____ Differences?
 - Turbide, Gale, Rapp fireball, but HHG not important.
 - d'Enterria & Peresseunko: 2+1D Expansion, includes peripheral prediction
 - Previous include no Jet-Medium, [< 4 GeV]
 - Turbide, Gale, Jeon, Moore Jet Medium
 - Bass, et.al. PCM + Bjorken Expansion

Must have the proper BBQ Utensils

• The Grill: RHIC

Single yRate Measurements

- EM Calorimeter "Base Method": Count Cal Hits
 - PHENIX Calorimeters (seg. $\Delta\phi\Delta\theta\sim0.01^2$) PbSc/Gl MidRap
 - STAR Calorimeters (BC seg. $\Delta\phi\Delta\theta\sim0.05^2$ MidRap, ECC ForwardRap seg smaller)
- ForwardRap seg smaller)
 Limitations at low pT
 - Hadronic showers (50% @ pt < 1GeV)
 - Resolution ($\sigma_{E}/E = A/\sqrt{E+B}$)
 - Cluster splitting effects
 - acceptance for π^{0}

- Systematic errors for photon 10-15%, π^0 14-18%
 - Dominated by Energy Scale and Efficiency at high p_T
 - At very low p_T by large hadron contamination

Singles Rate, Conversion Method

- Both PHENIX and STAR can measure photons via $\gamma \rightarrow e^+e^-$ conversion
- Slightly different methods
- Opening angle cuts, Dalitz removal, Electron ID
- Totally different systematics: charge tracks

The Statistical Method. Tagging & Isolation Cuts:

- Cocktail based on measured meson (π^0) rates
- Double Ratio $R_{y/\pi 0}$: Stat==syst error gets smaller in Run4
- Anti-Tagging π⁰ increases S/B
- As does isolation cut*

In Au+Au apply isolation out in peripheral bins

Photon (Non?) Flow

> 0.35

0.3

0.25

0.2

0.15

0.1

0 - 20%

pi0 v2

·photón·v2

- Measure reaction plane (PHENIX new MVD measurement)
- Indications of direct photon in inclusive (decay + direct) γ flow?
- Repeat direct γ Stat. Method vs. ϕ_R

Photon-Jet Correlations

- Convenient for triggering
- Subtract $\pi 0$ decay photon trigger distribution use charge pions
- Azimuthal correlations: separate (jetmedium) Brems and Compton direct on the near side:

 π^{0} /Brems

Compton γ

• Fragmentation Function dN/dz using clean E_{γ}

γγInterferometry / HBT

- HBT real correlation at very low pT. Tie down total rate with 1D Q_{inv}
- Shape for γ - γ vs Minv different from π^0 - π^0 , other contributions (e.g.detector)
- Could be performed with conversions too
- Au+Au 3D spacetime geo. Q_{out,side,etc}...Info? Large combinatorics!

Follow the Recipes to Make Meals!

• A few of my own personal receipes:...

Recipes: @ high p_T more precision

- *p+p* Preliminary Comparison between isolation/non-iso method: negative Brems?
- pQCD Brems ~ 30%
- Plenty of room in those systematics
- Make real R_{AA} (with p+p γ-it's a there!) More precise also look for nuclear effects (k_T, Cronin)?

p_T (GeV/c)

Recipe: Use Conversion Measurements, too

- Use the conversion measurement:
- At low $p_T < \sim 3$ GeV systematics probably smaller
- Factor of 10²⁻⁴ loss in statistics won't hurt in Run4
- In the region of overlap with the Calorimeter measurements, reduce γ energy scale uncertainty by "combining" rate normalization
- extend $p+p \gamma$ measurement to lower p_T ?
- Meal: Constrain thermal model rates below 4 GeV and confirm or denv jet-medium enhancement

Recipe: Focus on Reaction Plane for Jet-Medium p_T

- Perform Reaction Plane dependent direct photon statistical analysis (under way @ PHENIX)
- Also with conversions where possible
- Measure direct γ flow directly (may be 0)
- Meal: Combine with HBT and other measurements to constrain space time geometry, path dependencies

Other Recipes:

- Study γ-h correlations: separate angular jet shape differences btw Brems., Compton π⁰ bkg
- Also difference in flow portion of γ-h angular correlation shape

• Any of your "family favorites"?

Conclusions

- No BBQ is complete without some good libations!
- Exciting time in the RHIC photon world!
- Not quite time yet: More time needed in front of the grill.
- But as our meals are slowly served, there will certainly be much to celebrate!

Back-up possible k_T effects (e.g. nuclear?)

